001     894959
005     20220126143614.0
024 7 _ |a 10.1109/JEDS.2021.3095389
|2 doi
024 7 _ |a 2128/28640
|2 Handle
024 7 _ |a WOS:000673622400001
|2 WOS
037 _ _ |a FZJ-2021-03500
082 _ _ |a 621.3
100 1 _ |a von Witzleben, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Determining the Electrical Charging Speed Limit of ReRAM Devices
260 _ _ |a [New York, NY]
|c 2021
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643199546_8201
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Redox-based random-access memory (ReRAM) has the potential to successfully address the technological barriers that today’s memory technologies face. One of its promising features is its fast switching speed down to 50 ps. Identifying the limiting process of the switching speed is, however, difficult. At sub-nanosecond timescales three candidates are being discussed: An intrinsic limitation, being the migration of mobile donor ions, e.g., oxygen vacancies, the heating time, and its electrical charging time. Usually, coplanar waveguides (CPW) are used to bring the electrical stimuli to the device. Based on the data of previous publications, we show, that the rise time of the effective electrical stimulus is mainly responsible for limiting the switching speed at the sub-nanosecond timescale. For this purpose, frequency domain measurements up to 40 GHz were conducted on three Pt\TaO x \Ta devices with different sizes. By multiplying the obtained scattering parameters of these devices with the Fourier transform of the incoming signal, and building the inverse Fourier transform of this product, the voltage at the ReRAM device can be determined. Finally, the rise time of the voltage at the ReRAM device is calculated, which is a measure to the electrical charging time. It was shown that this rise time amounts to 2.5 ns for the largest device, which is significantly slower than the pulse generator’s rise time. Reducing the device’s rise time down to 66 ps is possible, but requires smaller features sizes and other optimizations, which we summarize in this paper.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 1
536 _ _ |a BMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)
|0 G:(DE-82)BMBF-16ES1134
|c BMBF-16ES1134
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Walfort, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 2
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 3
|u fzj
700 1 _ |a Bottger, U.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1109/JEDS.2021.3095389
|g Vol. 9, p. 667 - 678
|0 PERI:(DE-600)2696552-5
|p 667 - 678
|t IEEE journal of the Electron Devices Society
|v 9
|y 2021
|x 2168-6734
856 4 _ |u https://juser.fz-juelich.de/record/894959/files/Determining_the_Electrical_Charging_Speed_Limit_of_ReRAM_Devices-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894959
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J ELECTRON DEVI : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21