000894961 001__ 894961
000894961 005__ 20211130111054.0
000894961 0247_ $$2doi$$a10.1007/s10278-021-00501-x
000894961 0247_ $$2ISSN$$a0897-1889
000894961 0247_ $$2ISSN$$a1618-727X
000894961 0247_ $$2Handle$$a2128/28857
000894961 0247_ $$2altmetric$$aaltmetric:113264164
000894961 0247_ $$2pmid$$apmid:34505957
000894961 0247_ $$2WOS$$aWOS:000695473600004
000894961 037__ $$aFZJ-2021-03501
000894961 041__ $$aEnglish
000894961 082__ $$a004
000894961 1001_ $$0P:(DE-HGF)0$$aAljawad, Hussein$$b0
000894961 245__ $$aEffects of the Nasal Cavity Complexity on the Pharyngeal Airway Fluid Mechanics: A Computational Study
000894961 260__ $$aHeidelberg$$bSpringer$$c2021
000894961 3367_ $$2DRIVER$$aarticle
000894961 3367_ $$2DataCite$$aOutput Types/Journal article
000894961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635432015_13275
000894961 3367_ $$2BibTeX$$aARTICLE
000894961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894961 3367_ $$00$$2EndNote$$aJournal Article
000894961 520__ $$aThe impact of the human nasal airway complexity on the pharyngeal airway fluid mechanics is investigated at inspiration. It is the aim to find a suitable degree of geometrical reduction that allows for an efficient segmentation of the human airways from cone-beam computed tomography images. The flow physics is simu- lated by a lattice-Boltzmann method on high-performance computers. For two patients, the flow field through the complete upper airway is compared to results obtained from three surface variants with continuously decreasing complexity. The most complex reduced airway model includes the middle and inferior turbinates, while the moderate model only features the inferior turbinates. In the simplest model, a pipe-like artificial structure is attached to the airway. For each model, the averaged pressure is computed at different cross sections. Furthermore, the flow fields are investigated by means of averaged velocity magnitudes, in-plane velocity vectors, and streamlines. By analyzing the averaged pressure loss from the nostrils to each cross section, it is found that only the most complex reduced models are capable of approximating the pressure distribution from the original geometries. In the moderate models, the geometry reductions lead to overpredictions of the pressure loss in the pharynx. Attaching a pipe-like structure leads to a higher deceleration of the incoming flow and underpredicted pressure losses and velocities, especially in the upper part of the pharynx. Dean-like vortices are observed in the moderate and pipe-like models, since their shape comes close to a 90°-bend elbow pipe.
000894961 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894961 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
000894961 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894961 7001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b1
000894961 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b2
000894961 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b3
000894961 7001_ $$0P:(DE-HGF)0$$aLee, Kyungmin Clara$$b4$$eCorresponding author
000894961 773__ $$0PERI:(DE-600)2080328-X$$a10.1007/s10278-021-00501-x$$p1120–1133$$tJournal of digital imaging$$v34$$x0897-1889$$y2021
000894961 8564_ $$uhttps://juser.fz-juelich.de/record/894961/files/Aljawad2021_Article_EffectsOfTheNasalCavityComplex.pdf
000894961 8564_ $$uhttps://juser.fz-juelich.de/record/894961/files/JDI_Aljawad_et_al_2021.pdf$$yPublished on 2021-09-10. Available in OpenAccess from 2022-09-10.
000894961 909CO $$ooai:juser.fz-juelich.de:894961$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b1$$kFZJ
000894961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b2$$kFZJ
000894961 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000894961 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894961 9141_ $$y2021
000894961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ DIGIT IMAGING : 2019$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-26$$wger
000894961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-26
000894961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000894961 920__ $$lyes
000894961 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894961 980__ $$ajournal
000894961 980__ $$aVDB
000894961 980__ $$aUNRESTRICTED
000894961 980__ $$aI:(DE-Juel1)JSC-20090406
000894961 9801_ $$aFullTexts