001     894961
005     20211130111054.0
024 7 _ |a 10.1007/s10278-021-00501-x
|2 doi
024 7 _ |a 0897-1889
|2 ISSN
024 7 _ |a 1618-727X
|2 ISSN
024 7 _ |a 2128/28857
|2 Handle
024 7 _ |a altmetric:113264164
|2 altmetric
024 7 _ |a pmid:34505957
|2 pmid
024 7 _ |a WOS:000695473600004
|2 WOS
037 _ _ |a FZJ-2021-03501
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Aljawad, Hussein
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effects of the Nasal Cavity Complexity on the Pharyngeal Airway Fluid Mechanics: A Computational Study
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635432015_13275
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The impact of the human nasal airway complexity on the pharyngeal airway fluid mechanics is investigated at inspiration. It is the aim to find a suitable degree of geometrical reduction that allows for an efficient segmentation of the human airways from cone-beam computed tomography images. The flow physics is simu- lated by a lattice-Boltzmann method on high-performance computers. For two patients, the flow field through the complete upper airway is compared to results obtained from three surface variants with continuously decreasing complexity. The most complex reduced airway model includes the middle and inferior turbinates, while the moderate model only features the inferior turbinates. In the simplest model, a pipe-like artificial structure is attached to the airway. For each model, the averaged pressure is computed at different cross sections. Furthermore, the flow fields are investigated by means of averaged velocity magnitudes, in-plane velocity vectors, and streamlines. By analyzing the averaged pressure loss from the nostrils to each cross section, it is found that only the most complex reduced models are capable of approximating the pressure distribution from the original geometries. In the moderate models, the geometry reductions lead to overpredictions of the pressure loss in the pharynx. Attaching a pipe-like structure leads to a higher deceleration of the incoming flow and underpredicted pressure losses and velocities, especially in the upper part of the pharynx. Dean-like vortices are observed in the moderate and pipe-like models, since their shape comes close to a 90°-bend elbow pipe.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 1
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 2
700 1 _ |a Schröder, Wolfgang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lee, Kyungmin Clara
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1007/s10278-021-00501-x
|0 PERI:(DE-600)2080328-X
|p 1120–1133
|t Journal of digital imaging
|v 34
|y 2021
|x 0897-1889
856 4 _ |u https://juser.fz-juelich.de/record/894961/files/Aljawad2021_Article_EffectsOfTheNasalCavityComplex.pdf
856 4 _ |y Published on 2021-09-10. Available in OpenAccess from 2022-09-10.
|u https://juser.fz-juelich.de/record/894961/files/JDI_Aljawad_et_al_2021.pdf
909 C O |o oai:juser.fz-juelich.de:894961
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177985
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165948
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-26
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J DIGIT IMAGING : 2019
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21