000894982 001__ 894982
000894982 005__ 20220131120403.0
000894982 0247_ $$2doi$$a10.1002/aisy.202000134
000894982 0247_ $$2Handle$$a2128/28649
000894982 0247_ $$2altmetric$$aaltmetric:88509057
000894982 0247_ $$2WOS$$aWOS:000669790800016
000894982 037__ $$aFZJ-2021-03510
000894982 082__ $$a620
000894982 1001_ $$0P:(DE-Juel1)177689$$aZiegler, Tobias$$b0
000894982 245__ $$aIn‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches
000894982 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KGaA$$c2020
000894982 3367_ $$2DRIVER$$aarticle
000894982 3367_ $$2DataCite$$aOutput Types/Journal article
000894982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643199260_11108
000894982 3367_ $$2BibTeX$$aARTICLE
000894982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894982 3367_ $$00$$2EndNote$$aJournal Article
000894982 520__ $$aThis work studies a computation in-memory concept for binary multiply-accumulate operations based on complementary resistive switches (CRS). By exploiting the in-memory boolean exclusive OR (XOR) operation of single CRS devices, the Hamming Distance (HD) can be calculated if the center electrodes of multiple CRS cells are connected. This HD is linearly encoded in the voltage drop of the common electrode, and from it the result of a binary multiply-accumulate operation can be calculated. A small-scale demonstration is experimentally realized and the feasibility of the in-memory computation concept is confirmed. A simulation study identifies the low resistance state (LRS) variability as the main reason for the variations in the output voltage. The application as a potential hardware accelerator for the inference step of binary neural networks is investigated. Therefore, a 1-layer fully connected neural network is trained on a binarized version of the MNIST data set and the inference step of the test data set is simulated. The concept achieves a prediction accuracy of approximately 86%.
000894982 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894982 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000894982 536__ $$0G:(DE-82)BMBF-16ES1134$$aBMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)$$cBMBF-16ES1134$$x2
000894982 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894982 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$ufzj
000894982 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b2
000894982 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3$$eCorresponding author
000894982 773__ $$0PERI:(DE-600)2975566-9$$a10.1002/aisy.202000134$$gVol. 2, no. 10, p. 2000134 -$$n10$$p2000134 -$$tAdvanced intelligent systems$$v2$$x2640-4567$$y2020
000894982 8564_ $$uhttps://juser.fz-juelich.de/record/894982/files/aisy.202000134.pdf$$yOpenAccess
000894982 909CO $$ooai:juser.fz-juelich.de:894982$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177689$$aForschungszentrum Jülich$$b0$$kFZJ
000894982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b1$$kFZJ
000894982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ
000894982 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894982 9141_ $$y2021
000894982 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894982 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-12
000894982 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-12
000894982 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894982 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-12
000894982 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000894982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000894982 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000894982 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000894982 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000894982 980__ $$ajournal
000894982 980__ $$aVDB
000894982 980__ $$aI:(DE-Juel1)PGI-7-20110106
000894982 980__ $$aI:(DE-82)080009_20140620
000894982 980__ $$aUNRESTRICTED
000894982 9801_ $$aFullTexts