001     894982
005     20220131120403.0
024 7 _ |a 10.1002/aisy.202000134
|2 doi
024 7 _ |a 2128/28649
|2 Handle
024 7 _ |a altmetric:88509057
|2 altmetric
024 7 _ |a WOS:000669790800016
|2 WOS
037 _ _ |a FZJ-2021-03510
082 _ _ |a 620
100 1 _ |a Ziegler, Tobias
|0 P:(DE-Juel1)177689
|b 0
245 _ _ |a In‐Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive Switches
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH Verlag GmbH & Co. KGaA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643199260_11108
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work studies a computation in-memory concept for binary multiply-accumulate operations based on complementary resistive switches (CRS). By exploiting the in-memory boolean exclusive OR (XOR) operation of single CRS devices, the Hamming Distance (HD) can be calculated if the center electrodes of multiple CRS cells are connected. This HD is linearly encoded in the voltage drop of the common electrode, and from it the result of a binary multiply-accumulate operation can be calculated. A small-scale demonstration is experimentally realized and the feasibility of the in-memory computation concept is confirmed. A simulation study identifies the low resistance state (LRS) variability as the main reason for the variations in the output voltage. The application as a potential hardware accelerator for the inference step of binary neural networks is investigated. Therefore, a 1-layer fully connected neural network is trained on a binarized version of the MNIST data set and the inference step of the test data set is simulated. The concept achieves a prediction accuracy of approximately 86%.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 1
536 _ _ |a BMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)
|0 G:(DE-82)BMBF-16ES1134
|c BMBF-16ES1134
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 1
|u fzj
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 3
|e Corresponding author
773 _ _ |a 10.1002/aisy.202000134
|g Vol. 2, no. 10, p. 2000134 -
|0 PERI:(DE-600)2975566-9
|n 10
|p 2000134 -
|t Advanced intelligent systems
|v 2
|y 2020
|x 2640-4567
856 4 _ |u https://juser.fz-juelich.de/record/894982/files/aisy.202000134.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894982
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177689
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-12
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21