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In-Memory Binary Vector—-Matrix Multiplication Based on
Complementary Resistive Switches

Tobias Ziegler, Rainer Waser, Dirk J. Wouters, and Stephan Menzel*

This work studies a computation in-memory concept for binary multiply-
accumulate operations based on complementary resistive switches (CRS). By
exploiting the in-memory boolean exclusive OR (XOR) operation of single CRS
devices, the Hamming Distance (HD) can be calculated if the center electrodes of
multiple CRS cells are connected. This HD is linearly encoded in the voltage drop
of the common electrode, and from it the result of a binary multiply-accumulate
operation can be calculated. A small-scale demonstration is experimentally
realized and the feasibility of the in-memory computation concept is confirmed.
A simulation study identifies the low resistance state (LRS) variability as the main
reason for the variations in the output voltage. The application as a potential
hardware accelerator for the inference step of binary neural networks is inves-
tigated. Therefore, a 1-layer fully connected neural network is trained on a
binarized version of the MNIST data set and the inference step of the test data set
is simulated. The concept achieves a prediction accuracy of approximately 86%.

1. Introduction

With artificial neural networks (ANNs) becoming more and
more powerful and with the slowdown of complementary
metal-oxide—semiconductor (CMOS) scaling, the Von Neumann
memory wall is becoming an increasingly prominent problem
for ANN hardware systems.["? Large neural networks especially
suffer from this because not all computational information
necessary can be stored in the cache memory, and costly
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communication with higher level storage
is necessary.”’l In software, techniques
such as pruning, weight reuse, or reducing
the quantization are used to create less
complex but still accurate ANNs.! A prom-
ising simplification from the hardware per-
spective is the aforementioned reduction in
quantization due to its reduced computa-
tional complexity.

The number of quantization levels can
even go down to the bare minimum of
two levels and results in binary neural net-
works (bNNs) which have been heavily
studied in recent years.*® These networks
use the values 1 and —1 to encode their
weights and activations during the infer-
ence step making them the most efficient
ANNs possible to compute in hardware.”)
With ongoing improvements in prediction
accuracy and the development of new hard-
ware accelerators, these networks are auspicious candidates for
computing ANNs on edge devices.

Apart from the use of CMOS accelerators, new emerging tech-
nologies based on resistive switching devices can play a crucial
role in this advancement."” These devices can mimic the synap-
tic weights in ANNs and, configured in a crossbar architecture,
enable fast analog computations of vector-matrix multiplica-
tions, which are the main operations in ANN. [11:12]

One promising class of resistive switching devices relies on
redox reactions and is therefore called redox-based resistive
switching devices, also known as redox-based random access
memory (ReRAM).'*! They are typically based on metal—
oxide-metal stacks and can change the conduction through
the oxide layer based on electric signals applied to the metal
electrodes. These changes in resistance from a high resistive
state (HRS) to a low resistance state (LRS) and vice versa origi-
nate from ionic movements in the oxide layer and concurrent
redox reactions.'

There are already many realizations of ReRAM crossbar arrays
used as accelerators for vector—matrix multiplication.">~*”! One
common type uses Kirchoft’s current law to do the computation
where the calculation result is encoded in the resulting current.
To compute this result, the current has to be sensed, which
becomes more difficult the lower the current is. This leads
to a trade-off in the circuit design as a lower current reduces
the energy consumption. Another commonly used architecture
builds up a resistive voltage divider between a sense resistance
and the resistive crossbar array. In this architecture, the result of
the computation is encoded in the voltage drop of the voltage
divider."® One design challenge of this architecture is the
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nonlinear dependence between the computational result and the
voltage drop, which may increase the overhead for the readout
circuitry.

The concept explored in this work also uses the voltage divider
effect to encode the result of the binary vector-matrix multipli-
cation, but still shows a linear dependence of the output voltage
on the computational result. The slope of this linear encoding
only depends on the resistance ratio between the HRS and
LRS. Thus, ReRAM cells with high LRS states can be used, pav-
ing the way for low power applications. With a resistance ratio of
approximately 100, nearly the full read voltage is used for the
encoding, which helps to separate the computation results from
each other. These properties make this concept a promising alter-
native as an accelerator for binary vector-matrix multiplications
and possibly simplifies the design of the peripheral circuitry.

2. Concept and Hardware Realization

2.1. Concept

ANNGs are inspired by biological neural networks, wherein the
neurons are connected by synaptic weights. These weights are
adjusted during the training procedure of the network to better
predict the underlying data used for the training. During the
inference step, when a signal propagates through the ANN,
the inputs of each neuron are multiplied by the corresponding
weights and the results are summed up. This operation is called
multiply-accumulate operation and has a large contribution to
the energy consumption of ANNs.['*!

A binary multiply-accumulate (bMAC) operation of two binary
vectors x and y (with x= (x1,%,, ..., %) and y=(y;,y5, ---, Vs),
where x;, y; € [1, — 1]) can be computed exploiting boolean logic.
To this end, each entry has to be transformed into a boolean
value, e.g., %inew = (¥iod + 1)/2. Then, a bitwise exclusive OR
(XOR) comparison is performed between these two vectors
and the resulting vector is accumulated (summation of the
“17-bits). This accumulation calculates the Hamming Distance
(HD), which describes how many digits of two binary words
are different. The HD needs to be retransformed to receive
the same result as in the original bMAC operation by
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bMAC = n — 2 x HD, with n being the length of the compared
vectors.

Complementary resistive switch (CRS) cells were introduced
by Linn et al. to resolve the sneak path problem in passive cross-
bar arrays.*” A CRS cell consists of two antiserially connected
ReRAM devices with a complementary encoding where one of
them is always in the HRS. Therefore, the total resistance of
the CRS cell is always in the HRS state which prevents sneak
paths during the destructive readout.””!

It was also shown that CRS cells can perform many logic oper-
ations by applying certain voltage patterns.*'*? One promising
logic operation is the CRS-based XOR operation enabled by mea-
suring the voltage drop across the center electrode. This logic
operation also functions without switching the device state.
With a single CRS cell, which is shown in Figure 1a,b in a vertical
and horizontal configuration, this operation can be achieved by
using the binary encoding (b;, bs) which is specified in Table 1a,b.
The voltage divider formed by the elements of the CRS cell only
leads to a relevant voltage output at the shared electrode if the
corresponding XOR operation results in a “1.” This XOR opera-
tion is also shown in Table 1c.

CRS cells can also be configured in a passive crossbar struc-
ture, as shown in Figure 1c. In this configuration, the center elec-
trodes of parallel CRS cells intentionally share one electrode.
This disables the intrinsic sneak path prevention of the CRS cell,
but does not influence the parallel read operation in the crossbar
array. Nevertheless, for programming each cell a selective device
is necessary. Typically transistors are used for that and as long as
the on-resistance of the transistor is a fraction of the LRS, the
influence of it during the read process can be neglected. For
the ongoing discussion, a slice of a passive crossbar array
(highlighted cells of Figure 1c) will be analyzed. A circuit dia-
gram of such a line of the array is shown in Figure 1d.

With the help of the earlier introduced XOR operation, Figure 1b
can be rearranged to Figure le. The resistances R, and R, can hen
be specified based on the result of the XOR operation of the stored
and input bit by R, = Rigs X XOR (b;, bs) + Rurs X (1 —XOR(b;, b))
and Ry, = Rigs x (1-XOR(b;, by)) + Risrs x XOR(b;, by).

This rearrangement facilitates creating the equivalent circuit
for a line of CRS cells with a common electrode for arbitrary
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Figure 1. Circuit diagrams. a) Circuit schematic of a CRS cell as developed by Linn et al.”% The voltage drop at the center electrode can be monitored.
b) Lateral configuration of a CRS cell. c) 3D illustration of a lateral CRS-based passive crossbar array. The highlighted part corresponds to the circuit
diagram of (d). d) Circuit schematic of multiple lateral CRS cells in parallel with a common center electrode. e) Equivalent circuit for one lateral CRS cell
with an arbitrary binary input (b;) applied. Using the encoding in Table 1a,b, the resistances R, and R}, can be calculated based on the stored pattern (bs)
and the result of XOR(b;, bs). f) Equivalent circuit for an arbitrary input and stored pattern of a shared electrode of multiple CRS cells in a line array. The
number of CRS cells connected by the shared electrode is defined by n.
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Table 1. XOR encoding for a single CRS cell and constant simulation
parameters.

a) Input bit

b; Vieft Viight
“0” Ground Viead
“1” Viead Ground
b) Stored bit

by Rieft Rright
“0” RLRS RHRS
“1” RHRS RLRS
) Vour of CRS

- bs=0 bs=1
bi=0 ~0 ~V\ead
bi=1 ~V\ead ~0
d) Constant simulation parameters

A [um?’] ¢ [eV] m [kg] Reeres [2]
0.04 0.7 119 x 9.1x 107" 1500

input and stored patterns. This equivalent circuit is shown in
Figure 1f, and with it an analytical expression for the voltage drop
at the common electrode can be derived as follows

HD x Rygs + (n — HD) X Rigs
1 X (Rygrs + Rigs)

Vou = (1)

Vread

A similar equation can be calculated for the XNOR operation
which was done by Chowdhury et al. in their system analysis of
an equivalent concept.’’! In our approach, the voltage divider
effect is used to retrieve the HD from the corresponding voltage
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drop of the shared electrode, and from that the bMAC result can
easily be computed if needed.

2.2. Hardware Realization

To confirm the linear relationship between the output voltage
and the HD, a single row of lateral CRS cells, each based on
two ReRAM cells, was fabricated.””! The ReRAM devices are
based on a platinum, tantalum oxide, tungsten stack capped
by another platinum layer. A detailed description of the fabrica-
tion process can be found in Section 6. Images of the fabricated
sample are shown in Figure 2. Figure 2a shows the sample
(background) connected with a probe card (foreground) to the
measurement setup. Figure 2b shows a lateral CRS cell (green)
and the shared electrode (blue). A scanning electron microscope
(SEM) image of a fabricated ReRAM device is shown in
Figure 2c. The green-colored part corresponds to the top elec-
trode (bitline), whereas the blue-colored part again shows the
shared electrode (wordline). For the measurement, 14 ReRAM
cells were combined into 7 lateral CRS cells and an exemplary
“1111111” pattern was stored in these devices.

The following procedure was used to program the correspond-
ing resistance states. In the first series of measurements, the LRS
(HRS) of the corresponding device was programmed by a positive
(negative) triangular voltage sweep with a maximum (minimum)
voltage of 3.0V (1.5 V) applied to the bitline and a sweep rate of
500 Vs~ The wordline was connected to a virtual ground and the
current was measured. For the transition to the LRS, a series resis-
tance of 10kQ was included to limit the current. For the LRS
(HRS), a programmed resistance of 2.5kQ (90kQ) was targeted
around which the measured resistances are fluctuating due to
the intrinsic resistance variability. The resistance of each device
was measured with a read voltage of 0.3 V applied to the bitline
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Figure 2. Measurement results of the fabricated sample. a) The image shows the fabricated sample (background) connected by a probe card (metal
needles in the foreground) to the measurement system. b) The center image depicts a lateral CRS cell (green) to which an input bit is applied. The output
voltage is measured at the shared electrode (blue). ¢) The SEM image on the right shows one resistive switch with an area of 200 nm x 200 nm. The
green-colored part is the top electrode and the blue-colored part is the shared electrode. d) Resistance value of each resistive switch read at a voltage of
0.3V applied to the top electrode. Two neighboring cells are combined to one lateral CRS cell to store an exemplary “1111111” pattern. The red dots
represent the resistance states with higher intrinsic variability and the blue dots represent the resistance states with the manually reduced variability.
e) Voltage drop at the shared electrode for each input pattern from “0000000” to “1111111” on the y-axis. On the x-axis, the HD between the input and
the stored pattern is shown. This measurement reveals that the variability from the resistance states has a significant influence on the variability of the
output voltage.
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while the wordline was grounded again. The measured results are
visualized by the red dots of Figure 2d. In the second series of
measurements, the same sweep rate was used and the maximum
and minimum voltage was manually adjusted to reduce the devia-
tion from the target resistance. The resistances were again read
with a voltage of 0.3V applied to the bitline while grounding
the wordline and are represented by the blue dots in Figure 2d.
For the computation of the HD, a pair of two bitlines is used to
encode one bit of the input pattern. All 128 possible input pat-
terns from “0000000” to “1111111” were encoded in voltages as
shown in Table 1a and applied to the line array. The voltage drop
on the worldline was measured and the results are shown in
Figure 2e. The HD between the input pattern and the stored pat-
tern is displayed on the x-axis. The voltage drop of the shared
electrode of the CRS cells is shown on the y-axis. The voltage
response of the stored resistance states with the higher variability
is represented by the red dots and the voltage response of the
resistance states with the lower variability is shown by the blue
dots. The linear dependence between the HD and the output volt-
age is visible in Figure 2e. The measurements also show that the
resistance variability has a significant influence on the variability
of the output voltage. To better understand this influence, a sim-
ulation study will be discussed in the following section.

3. Simulation Study on the Influence of
Resistance Variability

3.1. Modeling of ReRAM Cell Conduction in LRS and HRS

As the HRS of the ReRAM cells shows a nonlinear behavior
with respect to the voltage, a single ohmic resistance cannot
be used to describe the device behavior properly. Instead, mea-
sured [-V sweeps for each programmed resistance state in the
voltage regime from —0.3 to 0.3V in steps of 0.01V reveal this
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nonlinear behavior with a slight asymmetry with respect to the

voltage polarity (cf. Figure 3). To model this -V characteristic,

the conduction is described by assuming a tunneling process at

the platinum interface and an ohmic resistance in the bulk of the

oxide. The tunneling process is described by the so-called inter-

mediate current-voltage relationship derived by Simmons!®*!
eA

B eV 4rdv/2m eV
_W{(qb*?)e’(p(*T 4’77)
\% 4rd/2 \%4
*(4’*67)6"1’(*%’% 4”67)}

Here, e is the electron charge, A is the device area, h is Planck’s
constant, V is the applied voltage, m is the effective electron
mass, and ¢ is the tunneling barrier height. To fit the measured
resistance states, the only parameter adjusted is the effective tun-
nel barrier thickness d. The constant simulation parameters are
shown in Table 1d. The Simmons equation has been used pre-
viously to describe the electron transport in ReRAM devices.**’!

The measured -V sweeps for each cell in the LRS are shown
in Figure 3a by the colored circles. The simulated sweep based on
the described model is visualized by the lines using the same
color coding. The LRS is well described by that model only by
adjusting the effective tunnel barrier thickness d. The measured
I-V sweeps for the HRS are shown in Figure 3b. Again the mea-
surement is represented by the circles and the simulation by the
accordingly colored lines. The HRS can be fairly well described
by the model, and the deviations from the real nonlinearity and
asymmetry are small.

Using this conduction model and the fitted data, the measure-
ment results can be simulated with the Spectre Simulation
Platform of Cadence. In Spectre, seven lateral CRS cells are con-
figured in the experimental “1111111” configuration based on the
fitted model parameters and all possible input patterns are applied.

300 T T T T T T
e
250 + % B
200 g E
150 é % 1
100 | é E

50 % © measurement
O  simulation

0 1 1 1 1 1 1

0 1 2 3 4 5 6 7

Hamming Distance

Figure 3. Fitted measurement results described by a series combination of an ohmic resistor and a metal-insulator-metal tunnel barrier defined by
Equation (2). a) The circles represent measured |-V sweeps of the LRS with manually adjusted variability as described in Section 6. The voltage is applied
to the top electrode and ranges from —0.3 to 0.3 V with a voltage step of 0.01 V. For the model, the constant parameters described in Table 1d are used and
the effective tunnel barrier d is adjusted to fit the measurement results which is shown by the accordingly colored lines. b) The circles show the same
measurement results for the HRS as in (a) and the accordingly colored lines represent the characteristic of the simulation model. ¢) The model param-
eters fitted to the measured data in (a) and (b) are used to simulate the output voltage for the stored “1111111” pattern and all possible input patterns.
These simulation results are represented by the red circles and compared with the measured results from Figure 2e. The simulated circuit is in good
agreement with the measured data.
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The obtained results are shown in Figure 3c where the lower var-
iability data of Figure 2e are visualized by the blue circles, whereas
the simulation data are represented by the red circles. The data
points are slightly shifted apart from each other for a better visu-
alization. This direct comparison of the measured and simulated
circuit behavior also supports the agreement between the device
properties and the utilized conduction model.

3.2. Modeling of the Resistance Variability

To better understand the origin of the variability in Figure 2e, a
simulation study with changing variability contributions is per-
formed. Two truncated normal distributions for the tunnel thick-
ness d are assumed from which values are randomly taken for the
simulation. The LRS is drawn from a truncated normal distribu-
tion with a mean value of d;gs =0.75 nm and a standard devia-
tion of o1rs =0.02nm. The distribution is truncated after an
interval of 36. The HRS is drawn from a distribution that has
the same standard deviation, is equally truncated, and has a
mean value of dyrs=1.2nm. The utilized distributions for
the tunnel thickness are shown in Figure 4a. To confirm that
the assumed distributions correspond to reasonable resistance

www.advintellsyst.com

variations, the coefficient of variation (o/u) of the resulting
LRS and HRS distributions is compared with the measured data
by Sheng et al.”®! For this purpose, 100 000 values are randomly
drawn from each tunnel barrier distribution and the model
resistance at a read voltage of —0.11V is calculated to match the
experimental data. The simulated resistance distributions are
summarized in two histograms which are shown in Figure 4b.
The resulting LRS distribution has a mean value of 2.53 kQ with
a standard deviation of 206.8 kQ and the HRS distribution has a
mean value of 95.33 kQ with a standard deviation of 18.51 kQ.
The coefficient of variation is 0.19 for the HRS distribution,
which is similar to the one measured by Sheng et al. for that
resistance range.” The coefficient of variation for the LRS dis-
tribution is 0.08, which is roughly one order of magnitude higher
compared with the results of Sheng et al. This deviation is inten-
tionally chosen to be higher to attribute for the missing transistor
in our demonstrator. Having a transistor in series to the ReRAM
cell enables a better control of the LRS, which would result in a
lower coefficient of variation.[?*2%

For the simulation study, 14 CRS devices are simulated
with the Spectre Simulation Platform of Cadence. To this end,
14 tunnel barriers are drawn from each distribution and
stored in a “11111111111111” configuration in the CRS cells.
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Figure 4. Simulation study to investigate the main contribution to the variability of the output voltage. a) Assumed truncated normal distributions for the
tunnel barrier d. The mean values are 0.75 and 1.2 nm and the standard deviation for both distributions is 0.02 nm. After 3 standard deviations, both
distributions are truncated. b) Histograms of the resulting resistances from the model read at a voltage of —0.11 V for 100 000 randomly drawn tunnel
thicknesses from each distribution in (a). The LRS mean is 2.53 kQ with a standard deviation of 206.8 kQ. The HRS mean is 95.33 kQ with a standard
deviation of 18.51 kQ. c) To represent the all “1” pattern for 14 CRS cells, 14 tunnel thicknesses had to be drawn from each distribution from (a) for the
variable case (blue dots). For the case without variability, the mean values of the distributions are used (red dots). d) Simulated output voltage for all
possible input patterns for tunnel barriers with variability (blue dots) and without (red dots). €) Simulated behavior of the output voltage with either LRS
tunnel barrier variability (blue dots) or HRS tunnel barrier variability (red dots) enabled. From (d) and (e) it can be deduced that mainly the LRS variability
causes the variation of the output voltage.
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In Figure 4c, each cell is shown with its corresponding tunnel
barrier drawn from the distribution visualized by the blue circles.
To be able to vary the amount of variability in the simulation,
each cell also has a constant tunnel barrier thickness assigned
to it. This value is defined by the mean value of the correspond-
ing distribution and is indicated by the red circles of Figure 4c.

In the first simulation, the influence of the variability on the
output voltage is studied. The ideal case, which is represented
by the red dots in Figure 4d, has no variability on the used tunnel
thicknesses and follows the linear relation of Equation (1). In con-
trast, adding variability to the HRS and LRS leads to a dispersion of
the output voltage around the ideal output voltage (blue dots).

To investigate which variability is mainly contributing to the
output voltage, the next simulation enables each variability sepa-
rately. The blue and red dots in Figure 4e correspond to only LRS
and only HRS variability, respectively. As shown by the red dots,
the HRS variability only has a minor influence on the output
voltage. Assuming only LRS variability, in contrast, results in
a higher variability of the output voltage. Thus, the main reason
for the output variability is the variability of the LRS. This is a
considerable result as it is the LRS variability which can be con-
trolled significantly better.[2%*"!

4, Potential as bNN Inference Accelerator

4.1. Simulation of the Inference Accuracy

To investigate the potential of the concept as a hardware acceler-
ator for binary vector—matrix multiplications, the inference step

:
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of the MNIST data set was simulated with the Spectre Simulation
Platform of Cadence.

As architecture, a 1-layer fully connected neural network with
784 input neurons and 10 output neurons was used. A represen-
tation of this network is shown in Figure 5a. Each output neuron
is representing the prediction of the bNN for its corresponding
number from 0 to 9. No activation functions are used because no
hidden layers are implemented.

The bNN was trained in software on the MNIST data set for
which an adapted version of the binarynet source code of the
nn_playground project of the user DingKe was used.’>*! For
the training in software, full precision weights are used which
are binarized for the inference step. During the training, the pre-
diction results of each training batch are used to calculate an
error function. This error is backpropagated using the adam opti-
mizer and the straight through estimator as approximation for
the gradient. With this process, the full precision weights are
updated for each training batch.[3?!

The data set had to be preprocessed because it originally con-
sists of grayscale images with 256 quantization levels. Therefore,
each pixel was binarized by using the following equation
x, = 2 X round(x/128) — 1. The trained weights of each output
are visualized in Figure 5b. Black pixels correspond to a weight of
-1 and white pixels to a weight of 1. For a better visualization, the
trained weights are reshaped into a 28 pixel x 28 pixel image,
which corresponds to the original shape of the MNIST data
set. These 7840 weights are then transferred to the correspond-
ing 7840 CRS cells by drawing tunnel barriers from the LRS and
HRS distributions shown in Figure 4a. A weight of value “1”
(“—17) is encoded according to a “1” (“0”) as described in

(d) predicted image
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Figure 5. A 1-layer fully connected bNN was trained on the MNIST data set published by LeCun et al.*% a) Software architecture of the trained bNN. It has
784 input neurons, one for each pixel of an image in the MNIST data set and 7840 weights which can be trained to be either 1 or —1. This image is adapted
from an image created by a web application of LeNail.*®! b) The trained weights between the input neurons and each output neuron are shown. Black
pixels represent a weight of =1 and white pixels a weight of 1. c) A block diagram of the simulated hardware architecture is shown. Two resistive switches
form one of the 7840 CRS cells which represent a single weight. For a prediction of the hardware accelerator, an input encoder encodes the input image
into a voltage pattern which is applied to the crossbar array. The lowest voltage drop at the outputs represents the prediction of the network. d) Confusion
matrix of all predictions and their actual values of the simulated hardware accelerator.
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Table 1b. A block diagram of the simulated hardware implemen-
tation is shown in Figure 5c. In this case, line resistances are
neglected to only show a proof of concept simulation. A more
detailed discussion of these effects is included in the supporting
information.

For estimating the accuracy of the accelerator, each image of
the test data set is binarized, flattened, and transformed to bool-
ean values “1” (“~1”) to “1” (“0”). The resulting vector is encoded
into a voltage pattern based on the encoding described in
Table 1a and applied to the crossbar array. The voltage drops
at each output line are compared with each other. The lowest
voltage drop is used as the prediction of the hardware accelerator.
In the simulation, the network can predict the correct handwrit-
ten number with an accuracy of ~#~86%. This result is promising,
as it is comparable with the 1-layer neural network with grayscale
inputs and analog weights by LeCun et al., which achieved an
accuracy of 88%.°% The simulated hardware accelerator not only
has to deal with binarization of the weights but also with the var-
iability of the resistance states and therefore suffers from this
accuracy loss. To understand where the hardware realization
is mainly doing false predictions, a visualization of the confusion
matrix, which compares the prediction result with the actual
number, is shown in Figure 5d. This image conveys that the net-
work mostly confuses the numbers 4 with 9.

4.2. Design Considerations

For deriving some design considerations, it is helpful to
introduce the resistance ratio r = Ryrg/Rigs and rearrange
Equation (1) to

1 r—1 HD
Vou = (m+m X 7) X Viead

With Equation (3), the theoretical possible voltage window for
a specific resistance ratio can be calculated by (r — 1)/(r + 1). For
filamentary ReRAM cells, realistic resistance ratios lie between
10 and 100 and will lead to a voltage window between 81%
and 98% of the applied read voltage.”*! Increasing this resistance
ratio further will always improve the voltage window but quickly
slow down and stop having a significant influence on it.

Another consideration can be concluded from the fact that
Equation (3) only depends on the resistance ratio and not on
any resistance state itself. Thus, technologies with high LRS
states and a reasonable resistance ratio benefit the most from this
concept. An increased LRS lowers the current for each calcula-
tion and therefore makes the calculation more energy efficient.

This is confirmed by calculating the worst-case current for one
operation. The current through the crossbar array depends on
the HD between the stored pattern and the input pattern and
is the most if the HD =n/2. With the help of the equivalent
circuit in Figure 1f, the equation for the worst-case current
can be derived to

G)

Vread

n 1+r
I X ——
r Rigrs

worst-case Z

“)

Apart from the energy considerations, the simulation study
has shown that the concept is intrinsically resistant to HRS
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variability, so the main challenge is the control of the LRS vari-
ability. This variability can be well controlled in integrated cir-
cuits by using a 1T1R structure or introducing write-verify
schemes to reprogram the resistance if it is outside specified
boundaries.[?84

5. Conclusion

This work presented a computing in-memory concept based on a
bitwise XOR operation for CRS cells. The center electrode of
multiple CRS cells is connected to perform the accumulation
of each cell’s boolean logic operation. A demonstrator of this con-
cept was fabricated and the measurement results were presented.
The intrinsic variability of the programmed resistance states led
to a significant variation of the output voltage. For understanding
the underlying mechanism, a simulation study was performed to
separate the LRS and HRS variability contribution. From this, the
conclusion that the majority of the output voltage variability
stems from the variations in the LRS could be derived. To show
that real-world problems can be tackled by the studied concept, a
1-layer fully connected bNN was trained on the MNIST data set
and the inference step was simulated. In this simulation, the
hardware accelerator achieved an accuracy of around 86%.

6. Experimental Section

Fabrication: For a reduction in processing steps, the CRS cells were fab-
ricated in a lateral configuration. A thermally oxidized Si piece (=430 nm
silicon oxide) was covered with =5 nm titanium as adhesive and ~30 nm
platinum as bottom electrode by sputter deposition. Then, diluted AZ nLOF
2020 photoresist was spin-coated and patterned by electron beam lithog-
raphy. Reactive ion beam etching was used to create the shared electrode
of the parallel CRS cells. After a resist removal process, the whole sample
was covered with a stack of =9 nm tantalum oxide, ~16 nm tungsten, and
~20 nm platinum by sputter deposition. Again, diluted AZ nLOF 2020 pho-
toresist was spin-coated and patterned by electron beam lithography. The
excess material was removed by reactive ion beam etching and the leftover
mask was cleaned. With this process, lateral CRS cells with a common elec-
trode down to a device size of 200 nm x 200 nm could be realized.

Measurement Setup: The uController module platform and a
4 x 32 switch matrix by aixACCT systems were the essential components
that were used to apply binary encoded patterns to the CRS cells.
A Picoscope 5444D MSO was used for measuring the voltage drop at
the shared electrode (wordline) of the CRS cells. Two of the inputs of
the switch matrix were connected to the voltage source of the
uController module, where one of them included an ohmic series resis-
tance of 10kQ. Another input was connected to the ground of the
uController module. This port could also measure the current. The last
input of the switch matrix was connected to a channel of the
Picoscope to monitor the voltage drop across the shared electrode.
The 32 outputs of the switch matrix were connected to a probe card that
connected the measurement system to the sample.

Initial Measurements: For the initial measurements, the measurement
signal was always applied to the top electrode (bitline) of the devices.
The shared electrode (wordline) was connected to ground. After fabrica-
tion, a triangular forming voltage sweep up to 4 V and down to —1.8 V was
applied. The sweep rate was set to 500V s~ and a series resistance of
10kQ was included only during the positive cycle to limit the current
through the devices after the forming process. After that, the devices were
switched 5 times between the HRS and LRS to establish a stable switching
behavior. To this end, a triangular sweep with the same sweep rate up to
3V and down to —1.5V was applied. Again, a series resistance of 10 kQ
was only included during the transition to the LRS.
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