000894997 001__ 894997
000894997 005__ 20230310131404.0
000894997 0247_ $$2doi$$a10.1002/pssr.202100409
000894997 0247_ $$2ISSN$$a1862-6254
000894997 0247_ $$2ISSN$$a1862-6270
000894997 0247_ $$2Handle$$a2128/28861
000894997 0247_ $$2WOS$$aWOS:000695798200001
000894997 037__ $$aFZJ-2021-03518
000894997 082__ $$a530
000894997 1001_ $$0P:(DE-HGF)0$$aAlessio, Andrea$$b0
000894997 245__ $$aFunctional Modifications Induced via X‐ray Nanopatterning in TiO 2 Rutile Single Crystals
000894997 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894997 3367_ $$2DRIVER$$aarticle
000894997 3367_ $$2DataCite$$aOutput Types/Journal article
000894997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643899660_27542
000894997 3367_ $$2BibTeX$$aARTICLE
000894997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894997 3367_ $$00$$2EndNote$$aJournal Article
000894997 520__ $$aThe possibility to directly write electrically conducting channels in a desired position in rutile TiO2 devices equipped with asymmetric electrodes—like in memristive devices—by means of the X-ray nanopatterning (XNP) technique (i.e., intense, localized irradiation exploiting an X-ray nanobeam) is investigated. Device characterization is carried out by means of a multitechnique approach involving X-ray fluorescence (XRF), X-ray excited optical luminescence (XEOL), electrical transport, and atomic force microscopy (AFM) techniques. It is shown that the device conductivity increases and the rectifying effect of the Pt/TiO2 Schottky barrier decreases after irradiation with doses of the order of 1011 Gy and fluences of the order of 1012 J m−2. Irradiated regions also show the ability to pin and guide the electroforming process between the electrodes. Indications are that XNP should be able to promote the local formation of oxygen vacancies. This effect could lead to a more deterministic implementation of electroforming, being of interest for production of memristive devices.
000894997 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894997 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000894997 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894997 7001_ $$00000-0002-3616-5494$$aBonino, Valentina$$b1
000894997 7001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b2
000894997 7001_ $$00000-0003-3179-271X$$aPicollo, Federico$$b3
000894997 7001_ $$00000-0001-9551-1716$$aTorsello, Daniele$$b4
000894997 7001_ $$00000-0002-9882-8361$$aMino, Lorenzo$$b5
000894997 7001_ $$00000-0002-4503-9385$$aMartinez-Criado, Gema$$b6
000894997 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b7
000894997 7001_ $$0P:(DE-HGF)0$$aTruccato, Marco$$b8$$eCorresponding author
000894997 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.202100409$$gp. 2100409 -$$n10$$p2100409$$tPhysica status solidi / Rapid research letters$$v15$$x1862-6270$$y2021
000894997 8564_ $$uhttps://juser.fz-juelich.de/record/894997/files/pssr.202100409.pdf$$yOpenAccess
000894997 909CO $$ooai:juser.fz-juelich.de:894997$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169605$$aForschungszentrum Jülich$$b2$$kFZJ
000894997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b7$$kFZJ
000894997 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894997 9141_ $$y2021
000894997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894997 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894997 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2019$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000894997 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894997 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894997 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000894997 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000894997 980__ $$ajournal
000894997 980__ $$aVDB
000894997 980__ $$aI:(DE-Juel1)PGI-7-20110106
000894997 980__ $$aI:(DE-82)080009_20140620
000894997 980__ $$aUNRESTRICTED
000894997 9801_ $$aFullTexts