001     894997
005     20230310131404.0
024 7 _ |a 10.1002/pssr.202100409
|2 doi
024 7 _ |a 1862-6254
|2 ISSN
024 7 _ |a 1862-6270
|2 ISSN
024 7 _ |a 2128/28861
|2 Handle
024 7 _ |a WOS:000695798200001
|2 WOS
037 _ _ |a FZJ-2021-03518
082 _ _ |a 530
100 1 _ |a Alessio, Andrea
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Functional Modifications Induced via X‐ray Nanopatterning in TiO 2 Rutile Single Crystals
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643899660_27542
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The possibility to directly write electrically conducting channels in a desired position in rutile TiO2 devices equipped with asymmetric electrodes—like in memristive devices—by means of the X-ray nanopatterning (XNP) technique (i.e., intense, localized irradiation exploiting an X-ray nanobeam) is investigated. Device characterization is carried out by means of a multitechnique approach involving X-ray fluorescence (XRF), X-ray excited optical luminescence (XEOL), electrical transport, and atomic force microscopy (AFM) techniques. It is shown that the device conductivity increases and the rectifying effect of the Pt/TiO2 Schottky barrier decreases after irradiation with doses of the order of 1011 Gy and fluences of the order of 1012 J m−2. Irradiated regions also show the ability to pin and guide the electroforming process between the electrodes. Indications are that XNP should be able to promote the local formation of oxygen vacancies. This effect could lead to a more deterministic implementation of electroforming, being of interest for production of memristive devices.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|x 0
|f POF IV
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bonino, Valentina
|0 0000-0002-3616-5494
|b 1
700 1 _ |a Heisig, Thomas
|0 P:(DE-Juel1)169605
|b 2
700 1 _ |a Picollo, Federico
|0 0000-0003-3179-271X
|b 3
700 1 _ |a Torsello, Daniele
|0 0000-0001-9551-1716
|b 4
700 1 _ |a Mino, Lorenzo
|0 0000-0002-9882-8361
|b 5
700 1 _ |a Martinez-Criado, Gema
|0 0000-0002-4503-9385
|b 6
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 7
700 1 _ |a Truccato, Marco
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1002/pssr.202100409
|g p. 2100409 -
|0 PERI:(DE-600)2259465-6
|n 10
|p 2100409
|t Physica status solidi / Rapid research letters
|v 15
|y 2021
|x 1862-6270
856 4 _ |u https://juser.fz-juelich.de/record/894997/files/pssr.202100409.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894997
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169605
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI-R : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21