| Hauptseite > Publikationsdatenbank > Effects of Short-Term Root Cooling before Harvest on Yield and Food Quality of Chinese Broccoli (Brassica oleracea var. Alboglabra Bailey) > print |
| 001 | 895021 | ||
| 005 | 20211025171509.0 | ||
| 024 | 7 | _ | |a 10.3390/agronomy11030577 |2 doi |
| 024 | 7 | _ | |a 2128/28755 |2 Handle |
| 024 | 7 | _ | |a WOS:000633220100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-03534 |
| 082 | _ | _ | |a 640 |
| 100 | 1 | _ | |a He, Fang |0 P:(DE-Juel1)164665 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Effects of Short-Term Root Cooling before Harvest on Yield and Food Quality of Chinese Broccoli (Brassica oleracea var. Alboglabra Bailey) |
| 260 | _ | _ | |a Basel |c 2021 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1633951068_10863 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Vegetable product quality is an important consideration for consumers. Long-term root cooling could improve certain food quality of horticultural crops, but often comes at the expense of reduced shoot biomass or yield. Since few studies have investigated how fast Chinese broccoli (Brassica oleracea var. alboglabra Bailey) responds to changes of root temperature, we shortened the duration of the root cooling treatment to one week before harvest to make the production system more effective. The aim of this study was to improve the food quality of Chinese broccoli without causing deleterious effects on plant growth and yield. The seedlings were cultivated hydroponically at two root temperatures (10 and 20 °C) during the last week prior to harvest in summer 2018 (Exp-1) and autumn 2019 (Exp-2). Plant growth, yield, physiological variables, soluble sugars, total chlorophyll, glucosinolates and mineral elements concentration were examined. The results showed that the yield reduction was alleviated compared to results over the long-term. Specifically, yield was not affected by root cooling in Exp-1 and reduced by 18.9% in Exp-2 compared to 20 °C. Glucose and fructose concentrations of the leaves were increased when the root temperature was 10 °C in both experiments with a more pronounced impact in Exp-2. In addition, root cooling produced a significant accumulation of individual glucosinolates, such as progoitrin, gluconapin, 4-methoxyglucobrassicin and 4-hydroxyglucobrassicin, in the stems of Exp-1 and the leaves of Exp-2. Minerals, such as N, showed reductions in the shoot, but accumulation in the root. Therefore, compared to long-term root cooling, short-term (one week) reduction of the root temperature is more economical and could help improve certain quality characteristics of Chinese broccoli with less or even no yield reduction. |
| 536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
| 536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 700 | 1 | _ | |a Thiele, Björn |0 P:(DE-Juel1)129410 |b 1 |u fzj |
| 700 | 1 | _ | |a Kraus, David |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Bouteyine, Souhaila |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Watt, Michelle |0 P:(DE-Juel1)166460 |b 4 |
| 700 | 1 | _ | |a Kraska, Thorsten |0 0000-0001-9451-6769 |b 5 |
| 700 | 1 | _ | |a Schurr, Ulrich |0 P:(DE-Juel1)129402 |b 6 |u fzj |
| 700 | 1 | _ | |a Kuhn, Arnd Jürgen |0 P:(DE-Juel1)129349 |b 7 |u fzj |
| 773 | _ | _ | |a 10.3390/agronomy11030577 |g Vol. 11, no. 3, p. 577 - |0 PERI:(DE-600)2607043-1 |n 3 |p 577 - |t Agronomy |v 11 |y 2021 |x 2073-4395 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/895021/files/agronomy-11-00577.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:895021 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)164665 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129410 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 0000-0001-9451-6769 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129402 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129349 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 1 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AGRONOMY-BASEL : 2019 |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|