000895022 001__ 895022
000895022 005__ 20240712100815.0
000895022 0247_ $$2doi$$a10.5194/acp-21-13763-2021
000895022 0247_ $$2ISSN$$a1680-7316
000895022 0247_ $$2ISSN$$a1680-7324
000895022 0247_ $$2Handle$$a2128/28767
000895022 0247_ $$2altmetric$$aaltmetric:113556946
000895022 0247_ $$2WOS$$aWOS:000697295500002
000895022 037__ $$aFZJ-2021-03535
000895022 082__ $$a550
000895022 1001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b0$$eCorresponding author
000895022 245__ $$aThe semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations
000895022 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000895022 3367_ $$2DRIVER$$aarticle
000895022 3367_ $$2DataCite$$aOutput Types/Journal article
000895022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634045031_14648
000895022 3367_ $$2BibTeX$$aARTICLE
000895022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000895022 3367_ $$00$$2EndNote$$aJournal Article
000895022 520__ $$aGravity waves play a significant role in driving the semiannual oscillation (SAO) of the zonal wind in the tropics. However, detailed knowledge of this forcing is missing, and direct estimates from global observations of gravity waves are sparse. For the period 2002–2018, we investigate the SAO in four different reanalyses: ERA-Interim, JRA-55, ERA-5, and MERRA-2. Comparison with the SPARC zonal wind climatology and quasi-geostrophic winds derived from Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite observations show that the reanalyses reproduce some basic features of the SAO. However, there are also large differences, depending on the model setup. Particularly, MERRA-2 seems to benefit from dedicated tuning of the gravity wave drag parameterization and assimilation of MLS observations. To study the interaction of gravity waves with the background wind, absolute values of gravity wave momentum fluxes and a proxy for absolute gravity wave drag derived from SABER satellite observations are compared with different wind data sets: the SPARC wind climatology; data sets combining ERA-Interim at low altitudes and MLS or SABER quasi-geostrophic winds at high altitudes; and data sets that combine ERA-Interim, SABER quasi-geostrophic winds, and direct wind observations by the TIMED Doppler Interferometer (TIDI). In the lower and middle mesosphere the SABER absolute gravity wave drag proxy correlates well with positive vertical gradients of the background wind, indicating that gravity waves contribute mainly to the driving of the SAO eastward wind phases and their downward propagation with time. At altitudes 75–85 km, the SABER absolute gravity wave drag proxy correlates better with absolute values of the background wind, suggesting a more direct forcing of the SAO winds by gravity wave amplitude saturation. Above about 80 km SABER gravity wave drag is mainly governed by tides rather than by the SAO. The reanalyses reproduce some basic features of the SAO gravity wave driving: all reanalyses show stronger gravity wave driving of the SAO eastward phase in the stratopause region. For the higher-top models ERA-5 and MERRA-2, this is also the case in the lower mesosphere. However, all reanalyses are limited by model-inherent damping in the upper model levels, leading to unrealistic features near the model top. Our analysis of the SABER and reanalysis gravity wave drag suggests that the magnitude of SAO gravity wave forcing is often too weak in the free-running general circulation models; therefore, a more realistic representation is needed.
000895022 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000895022 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000895022 7001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou$$b1
000895022 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b2$$ufzj
000895022 7001_ $$0P:(DE-HGF)0$$aMlynczak, Martin G.$$b3
000895022 7001_ $$0P:(DE-HGF)0$$aSchwartz, Michael J.$$b4
000895022 7001_ $$0P:(DE-HGF)0$$aWu, Qian$$b5
000895022 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b6$$ufzj
000895022 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-13763-2021$$gVol. 21, no. 18, p. 13763 - 13795$$n18$$p13763 - 13795$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000895022 8564_ $$uhttps://juser.fz-juelich.de/record/895022/files/acp-21-13763-2021.pdf$$yOpenAccess
000895022 909CO $$ooai:juser.fz-juelich.de:895022$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000895022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b0$$kFZJ
000895022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b1$$kFZJ
000895022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b2$$kFZJ
000895022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b6$$kFZJ
000895022 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000895022 9141_ $$y2021
000895022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000895022 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000895022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000895022 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000895022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000895022 920__ $$lyes
000895022 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000895022 9801_ $$aFullTexts
000895022 980__ $$ajournal
000895022 980__ $$aVDB
000895022 980__ $$aUNRESTRICTED
000895022 980__ $$aI:(DE-Juel1)IEK-7-20101013
000895022 981__ $$aI:(DE-Juel1)ICE-4-20101013