000896713 001__ 896713
000896713 005__ 20240712084529.0
000896713 0247_ $$2doi$$a10.1103/PhysRevMaterials.5.L091201
000896713 0247_ $$2ISSN$$a2475-9953
000896713 0247_ $$2ISSN$$a2476-0455
000896713 0247_ $$2Handle$$a2128/28666
000896713 0247_ $$2WOS$$aWOS:000705548700005
000896713 037__ $$aFZJ-2021-03546
000896713 082__ $$a530
000896713 1001_ $$0P:(DE-Juel1)145750$$aAguilera, Irene$$b0$$eCorresponding author$$ufzj
000896713 245__ $$aZ 2 topology of bismuth
000896713 260__ $$aCollege Park, MD$$bAPS$$c2021
000896713 3367_ $$2DRIVER$$aarticle
000896713 3367_ $$2DataCite$$aOutput Types/Journal article
000896713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1632140615_23426
000896713 3367_ $$2BibTeX$$aARTICLE
000896713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000896713 3367_ $$00$$2EndNote$$aJournal Article
000896713 520__ $$aWhile first-principles calculations with different levels of sophistication predict a topologically trivial Z2 state for bulk bismuth, some photoemission experiments show surface states consistent with the interpretation of bismuth being in a topologically nontrivial Z2 state. We resolve this contradiction between theory and experiment by showing, based on quasiparticle self-consistent GW calculations, that the experimental surface states interpreted as supporting a nontrivial phase are actually consistent with a trivial Z2 invariant. We identify this contradiction as the result of a crosstalk effect arising from the extreme penetration depth of the surface states into the bulk of Bi. A film of Bi can be considered bulklike only for thicknesses of about 1000 bilayers (≈400 nm) and more.
000896713 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000896713 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000896713 7001_ $$0P:(DE-Juel1)180856$$aKim, Hyun-Jung$$b1
000896713 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b2
000896713 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b3
000896713 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4
000896713 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.5.L091201$$gVol. 5, no. 9, p. L091201$$n9$$pL091201$$tPhysical review materials$$v5$$x2475-9953$$y2021
000896713 8564_ $$uhttps://juser.fz-juelich.de/record/896713/files/2108.12674.pdf$$yOpenAccess
000896713 8564_ $$uhttps://juser.fz-juelich.de/record/896713/files/PhysRevMaterials.5.L091201.pdf$$yOpenAccess
000896713 909CO $$ooai:juser.fz-juelich.de:896713$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000896713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b0$$kFZJ
000896713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180856$$aForschungszentrum Jülich$$b1$$kFZJ
000896713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b2$$kFZJ
000896713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b3$$kFZJ
000896713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
000896713 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000896713 9141_ $$y2021
000896713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000896713 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000896713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2019$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000896713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000896713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000896713 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000896713 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000896713 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000896713 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000896713 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x4
000896713 9801_ $$aFullTexts
000896713 980__ $$ajournal
000896713 980__ $$aVDB
000896713 980__ $$aUNRESTRICTED
000896713 980__ $$aI:(DE-Juel1)IAS-1-20090406
000896713 980__ $$aI:(DE-Juel1)PGI-1-20110106
000896713 980__ $$aI:(DE-82)080009_20140620
000896713 980__ $$aI:(DE-82)080012_20140620
000896713 980__ $$aI:(DE-Juel1)IEK-5-20101013
000896713 981__ $$aI:(DE-Juel1)IMD-3-20101013