Home > Publications database > Lewis Base–Brønsted Acid–Enzyme Catalysis in Enantioselective Multistep One‐Pot Syntheses > print |
001 | 896719 | ||
005 | 20220103172056.0 | ||
024 | 7 | _ | |a 10.1002/anie.202103406 |2 doi |
024 | 7 | _ | |a 0570-0833 |2 ISSN |
024 | 7 | _ | |a 1433-7851 |2 ISSN |
024 | 7 | _ | |a 1521-3773 |2 ISSN |
024 | 7 | _ | |a 2128/29099 |2 Handle |
024 | 7 | _ | |a altmetric:105204313 |2 altmetric |
024 | 7 | _ | |a pmid:33856095 |2 pmid |
024 | 7 | _ | |a WOS:000646206600001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03552 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Mantel, Marvin |0 P:(DE-Juel1)166432 |b 0 |
245 | _ | _ | |a Lewis Base–Brønsted Acid–Enzyme Catalysis in Enantioselective Multistep One‐Pot Syntheses |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637661514_29424 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Establishing one-pot, multi-step protocols combining different types of catalysts is one important goal for increasing efficiency in modern organic synthesis. In particular, the high potential of biocatalysts still needs to be harvested. Based on an in-depth mechanistic investigation of a new organocatalytic protocol employing two catalysts {1,4-diazabicyclo[2.2.2]octane (DABCO); benzoic acid (BzOH)}, a sequence was established providing starting materials for enzymatic refinement (ene reductase; alcohol dehydrogenase): A gram-scale access to a variety of enantiopure key building blocks for natural product syntheses was enabled utilizing up to six catalytic steps within the same reaction vessel. |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Giesler, Markus |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Guder, Marian |0 P:(DE-Juel1)159507 |b 2 |
700 | 1 | _ | |a Rüthlein, Elisabeth |0 P:(DE-Juel1)145645 |b 3 |
700 | 1 | _ | |a Hartmann, Laura |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Pietruszka, Jörg |0 P:(DE-Juel1)128906 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1002/anie.202103406 |g Vol. 60, no. 30, p. 16700 - 16706 |0 PERI:(DE-600)2011836-3 |n 30 |p 16700 - 16706 |t Angewandte Chemie / International edition |v 60 |y 2021 |x 1521-3773 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/896719/files/anie.202103406.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:896719 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)166432 |
910 | 1 | _ | |a Heinrich-Heine-Universität Düsseldorf |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)166432 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)159507 |
910 | 1 | _ | |a Heinrich-Heine-Universität Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)145645 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128906 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANGEW CHEM INT EDIT : 2019 |d 2021-01-30 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ANGEW CHEM INT EDIT : 2019 |d 2021-01-30 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBOC-20090406 |k IBOC |l Institut für Bioorganische Chemie (HHUD) |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBOC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|