000896753 001__ 896753
000896753 005__ 20240712100904.0
000896753 0247_ $$2doi$$a10.5194/acp-21-14019-2021
000896753 0247_ $$2ISSN$$a1680-7316
000896753 0247_ $$2ISSN$$a1680-7324
000896753 0247_ $$2Handle$$a2128/28768
000896753 0247_ $$2altmetric$$aaltmetric:113798203
000896753 0247_ $$2WOS$$aWOS:000697603300005
000896753 037__ $$aFZJ-2021-03577
000896753 082__ $$a550
000896753 1001_ $$0P:(DE-HGF)0$$aKuttippurath, Jayanarayanan$$b0$$eCorresponding author
000896753 245__ $$aExceptional loss in ozone in the Arctic winter/spring of 2019/2020
000896753 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000896753 3367_ $$2DRIVER$$aarticle
000896753 3367_ $$2DataCite$$aOutput Types/Journal article
000896753 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634046888_14648
000896753 3367_ $$2BibTeX$$aARTICLE
000896753 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000896753 3367_ $$00$$2EndNote$$aJournal Article
000896753 520__ $$aSevere vortex-wide ozone loss in the Arctic would expose both ecosystems and several millions of people to unhealthy ultraviolet radiation. Adding to these worries, and extreme events as the harbingers of climate change, exceptionally low ozone with column values below 220 DU occurred over the Arctic in March and April 2020. Sporadic occurrences of low ozone with less than 220 DU at different regions of the vortex for almost 3 weeks were found for the first time in the observed history in the Arctic. Furthermore, a large ozone loss of about 2.0–3.4 ppmv triggered by an unprecedented chlorine activation (1.5–2.2 ppbv) matching the levels occurring in the Antarctic was also observed. The polar processing situation led to the first-ever appearance of loss saturation in the Arctic. Apart from these, there were also ozone-mini holes in December 2019 and January 2020 driven by atmospheric dynamics. The large loss in ozone in the colder Arctic winters is intriguing and demands rigorous monitoring of the region.
000896753 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000896753 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000896753 7001_ $$00000-0002-9907-9120$$aFeng, Wuhu$$b1
000896753 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b2
000896753 7001_ $$0P:(DE-Juel1)168181$$aKumar, Pankaj$$b3
000896753 7001_ $$00000-0001-9352-5356$$aRaj, Sarath$$b4
000896753 7001_ $$00000-0002-8120-0391$$aGopikrishnan, Gopalakrishna Pillai$$b5
000896753 7001_ $$0P:(DE-HGF)0$$aRoy, Raina$$b6
000896753 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-14019-2021$$gVol. 21, no. 18, p. 14019 - 14037$$n18$$p14019 - 14037$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000896753 8564_ $$uhttps://juser.fz-juelich.de/record/896753/files/acp-21-14019-2021.pdf$$yOpenAccess
000896753 909CO $$ooai:juser.fz-juelich.de:896753$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000896753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b2$$kFZJ
000896753 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000896753 9141_ $$y2021
000896753 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000896753 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000896753 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000896753 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000896753 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000896753 920__ $$lyes
000896753 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000896753 9801_ $$aFullTexts
000896753 980__ $$ajournal
000896753 980__ $$aVDB
000896753 980__ $$aUNRESTRICTED
000896753 980__ $$aI:(DE-Juel1)IEK-7-20101013
000896753 981__ $$aI:(DE-Juel1)ICE-4-20101013