000896755 001__ 896755
000896755 005__ 20250129094350.0
000896755 0247_ $$2doi$$a10.1002/pssr.202100278
000896755 0247_ $$2ISSN$$a1862-6254
000896755 0247_ $$2ISSN$$a1862-6270
000896755 0247_ $$2Handle$$a2128/29009
000896755 0247_ $$2WOS$$aWOS:000696764700001
000896755 037__ $$aFZJ-2021-03579
000896755 082__ $$a530
000896755 1001_ $$0P:(DE-Juel1)165826$$aCao, Lei$$b0$$eCorresponding author
000896755 245__ $$aMetal–Insulator Transition via Ion Irradiation in Epitaxial La 0.7 Sr 0.3 MnO 3− δ Thin Films
000896755 260__ $$aWeinheim$$bWiley-VCH$$c2021
000896755 3367_ $$2DRIVER$$aarticle
000896755 3367_ $$2DataCite$$aOutput Types/Journal article
000896755 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636706869_30168
000896755 3367_ $$2BibTeX$$aARTICLE
000896755 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000896755 3367_ $$00$$2EndNote$$aJournal Article
000896755 520__ $$aComplex oxides provide rich physics related to ionic defects. For the proper tuning of functionalities in oxide heterostructures, it is highly desired to develop fast, effective, and low-temperature routes for the dynamic modification of defect concentration and distribution. Herein, the use of helium implantation to efficiently control the vacancy profiles in epitaxial La0.7Sr0.3MnO3−δ thin films is reported. The viability of this approach is supported by lattice expansion in the out-of-plane lattice direction and dramatic change in physical properties, i.e., a transition from ferromagnetic metallic to antiferromagnetic insulating. In particular, a significant increase of resistivity up to four orders of magnitude is evidenced at room temperature, upon implantation of highly energetic He ions. The result offers an attractive means for tuning the emergent physical properties of oxide thin films via strong coupling between strain, defects, and valence.
000896755 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000896755 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000896755 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000896755 7001_ $$0P:(DE-HGF)0$$aHerklotz, Andreas$$b1
000896755 7001_ $$0P:(DE-HGF)0$$aRata, Diana$$b2
000896755 7001_ $$0P:(DE-Juel1)186628$$aYin, Chenyang$$b3
000896755 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b4
000896755 7001_ $$0P:(DE-HGF)0$$aKentsch, Ulrich$$b5
000896755 7001_ $$0P:(DE-HGF)0$$aHelm, Manfred$$b6
000896755 7001_ $$0P:(DE-HGF)0$$aZhou, Shengqiang$$b7
000896755 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.202100278$$gp. 2100278 -$$n11$$p2100278 -$$tPhysica status solidi / Rapid research letters$$v15$$x1862-6270$$y2021
000896755 8564_ $$uhttps://juser.fz-juelich.de/record/896755/files/pssr.202100278.pdf$$yOpenAccess
000896755 909CO $$ooai:juser.fz-juelich.de:896755$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000896755 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165826$$aForschungszentrum Jülich$$b0$$kFZJ
000896755 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186628$$aForschungszentrum Jülich$$b3$$kFZJ
000896755 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b4$$kFZJ
000896755 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000896755 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000896755 9141_ $$y2021
000896755 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000896755 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000896755 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2019$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000896755 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000896755 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000896755 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000896755 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000896755 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000896755 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000896755 9801_ $$aFullTexts
000896755 980__ $$ajournal
000896755 980__ $$aVDB
000896755 980__ $$aUNRESTRICTED
000896755 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000896755 980__ $$aI:(DE-Juel1)PGI-4-20110106
000896755 980__ $$aI:(DE-82)080009_20140620
000896755 981__ $$aI:(DE-Juel1)JCNS-2-20110106