000897081 001__ 897081 000897081 005__ 20250106101716.0 000897081 0247_ $$2doi$$a10.1002/pssr.202000534 000897081 0247_ $$2ISSN$$a1862-6254 000897081 0247_ $$2ISSN$$a1862-6270 000897081 0247_ $$2WOS$$aWOS:000693517800001 000897081 037__ $$aFZJ-2021-03587 000897081 041__ $$aEnglish 000897081 082__ $$a530 000897081 1001_ $$0P:(DE-HGF)0$$aRaty, Jean-Yves$$b0 000897081 245__ $$aHow to Identify Lone Pairs, Van der Waals Gaps, and Metavalent Bonding Using Charge and Pair Density Methods: From Elemental Chalcogens to Lead Chalcogenides and Phase‐Change Materials 000897081 260__ $$aWeinheim$$bWiley-VCH$$c2021 000897081 3367_ $$2DRIVER$$aarticle 000897081 3367_ $$2DataCite$$aOutput Types/Journal article 000897081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734010933_5470 000897081 3367_ $$2BibTeX$$aARTICLE 000897081 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000897081 3367_ $$00$$2EndNote$$aJournal Article 000897081 520__ $$aLone pairs explain the structure of many molecular solids, as well as the chain-like or layered structures encountered in many chalcogenide crystals. Such chalcogenides have enabled a plethora of applications, including phase-change memories, thermoelectrics, topological insulators or photoconductors. In many of these, lone pairs also are invoked to explain the unconventional material properties. The presence of so-called van der Waals gaps in layered chalcogenides and their low thermal conductivity have also been linked to lone pairs. However, for some of these systems, a second view of bonding has been proposed, where atoms are held together across the interlayer spacing by shared electrons. To clarify this situation, herein, several systems for which lone pairs have been frequently emphasized are reinvestigated theoretically. By comparing the charge and electron localization analysis in terms of a Hartree–Fock-like pair density obtained from Kohn–Sham density functional theory (KS-DFT), it is verified that the structure of several chalcogenides is governed by the presence of lone pairs, whereas others are not. As an example, crystalline Se is demonstrated to form a structure with two covalent bonds and a lone pair, whereas metavalenty bonds are the essential characteristics of crystalline Sb, crystalline Te being an intermediate case. 000897081 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0 000897081 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000897081 7001_ $$00000-0002-0047-1596$$aGatti, Carlo$$b1 000897081 7001_ $$0P:(DE-HGF)0$$aSchön, Carl-Friedrich$$b2 000897081 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b3$$eCorresponding author 000897081 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.202000534$$gp. 2000534 -$$n11$$p2000534 -$$tPhysica status solidi / Rapid research letters$$v15$$x1862-6270$$y2021 000897081 8564_ $$uhttps://juser.fz-juelich.de/record/897081/files/Physica%20Rapid%20Research%20Ltrs%20-%202021%20-%20Raty%20-%20How%20to%20Identify%20Lone%20Pairs%20Van%20der%20Waals%20Gaps%20and%20Metavalent%20Bonding%20Using.pdf$$yRestricted 000897081 8564_ $$uhttps://juser.fz-juelich.de/record/897081/files/Raty%20-%20Lone%20pairs%20-%20PSSRRL%20-%202021%20author%20version.pdf$$yRestricted 000897081 909CO $$ooai:juser.fz-juelich.de:897081$$pVDB 000897081 9101_ $$0I:(DE-HGF)0$$60000-0002-0047-1596$$aExternal Institute$$b1$$kExtern 000897081 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH 000897081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b3$$kFZJ 000897081 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 000897081 9141_ $$y2021 000897081 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger 000897081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2019$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30 000897081 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30 000897081 920__ $$lyes 000897081 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0 000897081 980__ $$ajournal 000897081 980__ $$aVDB 000897081 980__ $$aI:(DE-Juel1)PGI-10-20170113 000897081 980__ $$aUNRESTRICTED