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Abstract 

Background: Polygenic scores (PGSs), which assess the genetic risk of individuals for a 

disease, are calculated as a weighted count of risk alleles identified in genome-wide 

association studies (GWASs). PGS methods differ in which DNA variants are included and 

the weights assigned to them; some require an independent tuning sample to help inform 

these choices. PGSs are evaluated in independent target cohorts with known disease status. 

Variability between target cohorts is observed in applications to real data sets, which could 

reflect a number of factors, e.g., phenotype definition or technical factors.  

Methods: The Psychiatric Genomics Consortium working groups for schizophrenia (SCZ) 

and major depressive disorder (MDD) bring together many independently collected case-

control cohorts. We used these resources (31K SCZ cases, 41K controls; 248K MDD cases, 

563K controls) in repeated application of leave-one-cohort-out meta-analyses, each used to 

calculate and evaluate PGS in the left-out (target) cohort. Ten PGS methods (the baseline 

PC+T method and nine methods that model genetic architecture more formally: SBLUP, 

LDpred2-Inf, LDpred-funct, LDpred2, Lassosum, PRS-CS, PRS-CS-auto, SBayesR, 

MegaPRS) are compared.  

Results: Compared to PC+T, the other nine methods give higher prediction statistics, 

MegaPRS, LDPred2 and SBayesR significantly so, up to 9.2% variance in liability for SCZ 

across 30 target cohorts, an increase of 44%. For MDD across 26 target cohorts these 

statistics were 3.5% and 59%, respectively.  

Conclusions: Although the methods that more formally model genetic architecture have 

similar performance, MegaPRS, LDpred2, and SBayesR rank highest in most comparison 

and are recommended in applications to psychiatric disorders.  
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Introduction 

Polygenic scores (PGSs), which assess the genetic risk of individuals for a disease(1, 2), are 

calculated as a weighted count of genetic risk alleles in the genome of an individual, with the 

risk alleles and their weights derived from the results of genome-wide association studies 

(GWAS)(3). PGS can be calculated for any trait or disease with sufficiently powered GWAS 

(‘discovery samples’), and accuracy of PGS applied in independent GWAS ‘target samples’ 

will increase as discovery sample size increases. Since genetic factors only capture the 

genetic contribution to risk and since PGS only capture part of the genetic risk, PGS cannot 

be diagnostically accurate risk predictors (see review(4)). Nonetheless, for many common 

complex genetic disorders, such as cancers(5, 6) and heart disease(7, 8), there is increasing 

interest in evaluating PGS for early disease detection, prevention and intervention(9-11).  

 

There are now many methods to calculate PGSs, and the methods differ in terms of two key 

criteria: which DNA variants to include and what weights to allocate to them. Here, for 

simplicity, we assume the DNA variants are single nucleotide polymorphisms, SNPs, but 

other DNA variants tested for association with a trait can be used. While stringent thresholds 

are set to declare significance for association of individual SNPs in GWAS, PGSs are robust 

to inclusion of some false positives. Hence, the maximum prediction from PGSs tested in 

target samples may include nominally associated SNPs. The optimum method to decide 

which SNPs to select and what weights to allocate them, may differ between traits depending 

on the sample size of the discovery GWAS and on the genetic architecture of the trait (the 

number, frequencies and effect sizes of causal variants), particularly given the linkage 

disequilibrium (LD) correlation structure between SNPs. Often, when new PGS methods are 

introduced, comparisons are made between a limited set of methods using simulated data, 

together with application to some real data examples. However, it can be difficult to compare 
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across the new methods, particularly because in real data there can be variability in PGS 

evaluation statistics between target cohorts, not encountered in idealised simulations. The 

reasons for this variability are usually unknown and not simple to identify (12) but could 

reflect a number of factors such as phenotype definition, ascertainment strategies of cases and 

controls, cohort-specific ancestry within the broad classification of ancestry defined by the 

GWAS discovery samples (e.g., European), or technical artefacts in genotype generation. 

  

Here, we compare ten PGS methods (PC+T(3, 13), SBLUP(14), LDpred2-Inf(15), 

LDpred2(15), LDpred-funct(16), Lassosum(17), PRS-CS(18), PRS-CS-auto(18) and 

SBayesR(19), MegaPRS(20), Table 1 ). Some of these methods (PC+T, LDpred2, MegaPRS, 

Lassosum and PRS-CS) require a ‘tuning sample’, a GWAS cohort with known trait status 

that is independent of both discovery and target samples, used to select parameters needed to 

generate the PGSs in the target sample. Whereas only GWAS summary statistics are needed 

for discovery samples, individual level genotype data are needed for tuning and target 

samples. Information about the LD structure is supplied by a reference data set of genome-

wide genotypes which can be independently collected from the GWAS data, but from 

samples of matched ancestry.  

 

Briefly, PC+T (P-value based clumping and thresholding, also known as the P+T or C+T 

method) uses the GWAS effect size estimates as SNP weights and includes independent 

SNPs (defined by an LD r2 filter for a given chromosomal window distance) with association 

P-values lower than a threshold (chosen after application in a tuning sample). PC+T is the 

most commonly used and basic method, and so is the benchmark method here. The other 

methods assume either that all SNPs have an effect size drawn from a normal distribution 

(SBLUP and LDpred2-Inf) or that SNP effects are drawn from mixtures of distributions with 
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the key parameters defining these architectures estimated through Bayesian frameworks 

(LDpred2, PRS-CS, SBayesR). LDpred-funct and MegaPRS include functional annotation to 

SNPs to up/down weight their contributions to the PGSs, which could improve prediction 

accuracy if this functional information helps to better separate true and false positive 

associations(21). The MegaPRS software implements a suite of methods (Table 1) and 

selects the method, together with its parameter estimates, that maximises prediction in the 

tuning cohort. MegaPRS utilises the BLD-LDAK model(22) where the variance explained by 

each SNP depends on its allele frequency, LD and functional annotations. Notably, some 

methods (SBayesR, PRS-CS-auto and LDpred2-auto) do not require a tuning cohort, so that 

the SNPs selected and their weights reflect only the properties of the discovery sample. Since 

LDpred2-auto is shown to perform similarly to LDpred2, we do not include it in comparisons 

made here. We apply these methods to data from the Psychiatric Genomics Consortium 

(PGC) working groups for schizophrenia (SCZ)(23, 24) and major depressive disorder 

(MDD)(12, 25, 26) (Tables S1 and S2). We select SCZ and MDD to study as they have the 

largest GWAS samples for psychiatric disorders to date but are diverse in lifetime risk, and 

are representative of psychiatric disorders which have all been shown to be highly polygenic 

(27). The PGC provides a useful resource for undertaking this study because it brings 

together many independently collected cohorts for GWAS meta-analysis. This allows the 

application of repeated leave-one-cohort-out GWAS analyses generating robust conclusions 

from evaluation of PGS applied across multiple left-out target cohorts. 

Materials and Methods 

Data 

All samples were of European ancestry with full details in the Supplementary Note, Table 

S1 and S2. Briefly, GWAS summary statistics were available from PGC SCZ for 37 
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European ancestry cohorts (24) (31K SCZ cases and 41K controls) of which 34 had 

individual level data available. PGS were calculated in each of the 30 cohorts (target 

samples) using the GWAS discovery sample based on a meta-analysis of 37-2 = 35 cohorts 

(24) i.e., the target sample was excluded from the discovery sample as well as a sample 

selected to be a tuning sample. Analyses were repeated using four different tuning samples, 

two of which were large (swe6:2313; gras: 2318) and two were small (lie2:406; msaf:466). 

Similarly, GWAS MDD summary statistics were available from 248K cases and 563K 

controls(25), which included data from the 26 cohorts from PGC MDD with individual level 

data (15K cases and 24K controls). We left one cohort out of those 26 cohorts in turn as the 

target sample, and then used a meta-analysis of remaining data as discovery samples. A 

cohort(25), not included in the discovery GWAS was used as the tuning sample (N=1,679).  

 

Baseline SNP selection 

For baseline analyses, only SNPs with minor allele frequency (MAF) > 0.1 and imputation 

INFO score > 0.9 (converted to best-guess genotype values of 0, 1 or 2) were selected. 

Sensitivity analyses relaxed the MAF threshold to MAF > 0.05 or 0.01 and INFO score 

threshold to 0.3. All methods were conducted using HapMap3 SNPs, except the method 

PC+T, which was conducted based on all imputed SNPs (8M in SCZ, and 13M in MDD).  

 

Prediction methods  

We define a PGS of an individual, j, as a weighted sum of SNP allele counts: ∑ "#!$!"#
!$% , 

where m is the number of SNPs included in the predictor, "#! is the per allele weight for the 

SNP, $!" is a count of the number (0, 1, or 2) of trait-associated alleles of SNP i in individual 

j. We compared ten risk prediction methods, described in the Supplemental Note and 

summarized in Table 1. The methods differ in terms of the SNPs selected for inclusion in the 
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predictor and the "#! values assigned to the SNPs. All methods use the GWAS summary 

statistics as the starting point, but each makes choices differently for which SNPs to include 

and for the "#! values to assign. Some methods use a tuning cohort; parameter estimates that 

maximize prediction in that tuning cohort are selected for application in the target sample. 

Several methods employ an LD reference sample to infer the expected correlation structure 

between SNP association statistics, those recommended by each software implementation are 

used.  

 

Evaluation of out-of-sample prediction 

The accuracy of prediction in each target cohort was quantified by 1) Area under the receiver 

operator characteristic curve (AUC; R library pROC(35)). AUC can be interpreted as a 

probability that a case ranks higher than a control. 2) The proportion of variance on the 

liability scale explained by PGS(36). We used the population lifetime risk of SCZ and MDD 

as 1% and 15% respectively to convert the variance explained in a linear regression to the 

liability scale(25, 28, 37). 3) Odds ratio (OR) of tenth PGS decile relative to the first decile. 

4) Odds ratio of tenth PGS decile relative to those ranked in the middle of the PGS 

distribution, which is calculated as the average of OR of tenth decile relative to fifth and sixth 

decile. 5) Standard deviation unit increase in cases. The PGS in each target cohort were 

scaled by standardising the PGS of controls and applying the standardisation to cases: 

&'(!"#$)#*+,(&'(!%&'(%))
(/(&'(!%&'(%))

, where SD is standard deviation. This does not impact PGS 

evaluation statistics but simply means that PGS are in SD units for all cohorts. The regression 

analyses for evaluation statistics 2-4 include 6 ancestry principal components as covariates. 

These covariates are not included in the AUC model and the standard deviation unit increase 

in cases model (see Supplementary Note).  
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Results 

Prediction evaluation statistics based on all ten PGS methods and applied to SCZ across 30 

study cohorts (Figure 1, Figure S1, Table S3 and S4), and to MDD across 26 cohorts 

(Figure S2, Table S5 and S6) are presented. There is variability in prediction statistics across 

target cohorts (as observed before(12, 28)) which is not a reflection of sample size (Figure 

S3 and Table S4 for SCZ, Figure S4 and Table S6 for MDD). Some significant associations 

were found from regression of prediction statistics on principal components (PCs) estimated 

from genome-wide SNPs (for SCZ Figure S3, but not MDD Figure S4), where the PCs 

capture both within-European ancestry and array differences between cohorts. The 

correlations of PGS between different methods are high (Table S7), but are lowest between 

PC+T and other methods (minimum 0.68). In contrast, the correlations between the other 

nine methods are always > 0.82. In theory, LDpred2-Inf and SBLUP are the same method. In 

practice, there are differences in implementation (e.g., different input parameters associated 

with definition of LD window) and although the correlation between their PGS is 0.974 the 

prediction accuracy is consistently higher for LDpred2-Inf. For SCZ, the AUC for all nine 

methods that directly model genetic architecture, other than PRS-CS-auto, are significantly 

higher than the PC+T method at the nominal level (Figure 1A). PGS from LDpred2, 

SBayesR and MegaPRS are significantly higher than the PC+T method after Bonferroni 

correction (p-value < 0.0011=0.05/45 (45 pairwise comparisons between 10 methods), one-

tailed Student’s t-test). For MDD none of the differences between methods were significant 

(Figure S2A). For both SCZ and MDD across all statistics, regardless of tuning cohorts, 

LDpred2, SBayesR and MegaPRS, show relatively better performance (median across target 

cohorts) than other methods, although there is no significant difference between the nine 

methods that directly model genetic architecture. For variance explained on the liability scale, 

the PC+T PGS explained 6.4% for SCZ, averaged over the median values across the four 
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tuning cohorts (Figure 1B), while it was 8.9%, 9.0%, and 9.2% for MegaPRS, LDpred2, and 

SBayesR, corresponding to an increase of 39%, 41% and 44%, respectively. For MDD 

although the variance explained is lower in absolute terms, 2.2% for PC+T vs 3.4% for 

MegaPRS, 3.5% for LDpred2 and 3.5% for SBayesR; the latter represents a 59% increase 

(Figure S2B).  

 

We provide several evaluation statistics that focus on those in the top 10% of PGS, because 

clinical utility of PGS for psychiatric disorders is likely to focus on individuals that are in the 

top tail of the distribution of predicted genetic risk. The odds ratio for top vs bottom decile 

are large, ranging from 14 for PC+T to 30 for MegaPRS for SCZ and 3 for PC+T to 3.7 for 

SBayesR for MDD. While these top vs bottom decile odds ratios (Figure 1C and S2C) are 

much larger than the odds ratio obtained by using PGS to screen a general population (Figure 

1D and 2D) or patients in a healthcare system to identify people at high risk(38, 39), these 

comparisons are useful for research purposes, which could, for example, make cost-effective 

experimental designs focussing on individuals with high vs low PGS(40). The odds ratio of 

top 10% vs middle 10% are much less impressive, up to median of 6 for SCZ and 2 for MDD, 

but more fairly represents the value of PGS in population settings. These values can be 

benchmarked against risk in 1st degree relatives of those affected, which are of the order of 8 

for SCZ and 2 for MDD; low values are always expected for MDD because it is more 

common (lifetime risk ~15% compared to ~1% for SCZ). The odds ratio values are 

particularly high for some cohorts (Table S4), because in some SCZ cohorts the bottom 10% 

include very few or no cases, especially in cohorts with relatively small sample sizes.  

 

The impact of tuning cohort. Five methods (i.e., PC+T, LDpred2, Lassosum, PRC-CS, and 

MegaPRS) use tuning cohorts to determine key parameters for application of the method into 
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the target cohorts. Tuning parameters impact results in two ways. First, the parameters may 

be dependent on the choice of tuning cohort. Second, the discovery GWAS sample may be 

reduced in size (and hence power) if a tuning cohort needs to be excluded from the discovery 

GWAS. In all our analyses the tuning cohort is excluded from all GWAS discovery samples 

so that GWAS discovery sample is not variable across methods for each target cohort. Our 

results show that the tuning cohort can have considerable impact (Figures 1, 2). In our 

results, the tuning cohort that generates higher PGS is method dependent and differs between 

cohorts. For the methods that use tuning samples, the larger tuning samples (swe6 and gras) 

mostly generate higher prediction statistics compared to the two smaller tuning samples (lie 

and msaf), but the differences are not statistically significant. Although methods SBLUP, 

LDpred2-Inf, LDpred-funct, PRS-CS-auto and SBayesR require no tuning cohort, they serve 

as a benchmark, since the differences in their results reflect differences in the changed 

discovery samples (e.g., msaf is in the discovery sample, when swe6 is the tuning cohort, and 

vice versa), as well as the stochasticity inherent in the Gibbs sampling of Bayesian methods. 

 

The impact of MAF/INFO threshold. A MAF threshold of 0.1 and a INFO threshold of 0.9 

are used to be consistent with applications in the PGC SCZ(28) and PGC MDD(25) studies, 

which had been imposed recognising that these thresholds generated more robust PGS results 

than using lower threshold values. In the second sensitivity analysis applied to the SCZ data, 

the MAF threshold was relaxed to 0.05 or 0.01 (Figure 3). The prediction evaluation 

statistics increase for some cohorts and decrease for others (trends with sample size were not 

significant). PC+T is more impacted that the other nine methods. Across target cohorts, 

different evaluation statistics were almost identical when including less common SNPs 

(Table S3). Relaxing the INFO score to 0.3 has a negligible effect (Figure S5).  
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Discussion  

Comparison of PGS risk prediction methods showed that all nine methods that directly model 

genetic architecture had higher prediction evaluation statistics over the benchmark PC+T 

method for SCZ and MDD. While the differences between these nine methods were small, 

we found that MegaPRS, LDpred2, and SBayesR consistently ranked highest. Given that the 

PGS is a sum of many small effects, a normal distribution of PGS in a population is expected 

(and observed Figures S6-9). In idealised data, such as the relatively simple simulation 

scenarios usually considered in method development, all evaluation statistics should rank the 

same, but with real data sets this is not guaranteed. This is the motivation for considering a 

range of evaluation statistics. Our focus on statistics for those in the top 10% of PGS is 

relevant to potential clinical utility. In the context of psychiatry, it is likely that this will focus 

on people presenting in a prodromal state with clinical symptoms that have not yet specific to 

a diagnosis(11, 41). High PGS in those presenting to clinics could help contribute to clinical 

decision-making identifying individuals for closer monitoring or earlier intervention. Since a 

genetic-based predictor only predicts part of the risk of disease, and since a PGS only 

predicts part of the genetic contribution to disease it is acknowledged that PGS cannot be 

fully accurate predictors. Hence, the discriminative ability of PGS is low in the general 

population and the use of PGS in clinical settings requires evaluation including related ethical 

issues (42). Nonetheless, PGS, in combination with clinical risk factors, could make a useful 

contribution to risk prediction(41, 43, 44).  

 

In sensitivity analyses that used different quality criteria for SNPs, e.g. MAF of 0.01 vs 0.05, 

INFO of 0.3 vs 0.9, we concluded that, currently, there is little to be gained in PGS from 

including SNPs with MAF < 0.10 and INFO < 0.9 for the diseases/dataset studied (Table S8 

and S9). This result may seem counter-intuitive since variants with low MAF are expected to 
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play an important role in common disease, and some may be expected to have larger effect 

sizes than more common variants(45, 46). However, sampling variance is a function of allele 

frequency (≈ var (y)/ (2*MAF (1-MAF)*n)), where y is the phenotype and n is sample size), 

such that a variant of MAF =0.01 has sampling variance 9 times greater than a variant of 

MAF=0.1. Moreover, in real data sets small sample size of contributing cohorts mean that 

technical artefacts can accumulate to increase error in effect size estimates particularly of low 

frequency variants. Our conclusion that little is gained from including variants of MAF < 0.1 

and reducing INFO threshold needs to be revisited as larger individual cohorts in discovery 

samples and larger target cohorts accumulate. Moreover, our comparison of methods uses 

only study samples of European ancestry. More research and data are needed to understand 

the properties of prediction methods within other ancestries and across ancestries, given 

potential differences in genetic architectures (in terms of number, frequencies and effect sizes 

of causal variants) and LD between measured variants and causal variants(47, 48).  

 

For both SCZ and MDD, while the methods other than PC+T had similar performance, 

LDpred2, MegaPRS, and SBayesR saw the highest prediction accuracy in most of the 

comparisons. We note that we did not consider a version of PC+T that has been shown to 

have higher out of sample prediction compared to the standard implementation(13). This 

method conducts a grid search in a tuning cohort to determine LD r2 and INFO score 

thresholds for SNPs as well as the P-value threshold. Since the optimum LD threshold is 

likely to vary across genomic regions, the grid search approach is less appealing than the 

methods which implicitly allow this to vary. A sensitivity analysis in which we varied the r2 

threshold in the PC+T showed only a small gain from optimising this (Table S10). LDpred2 

has a version that does not require a tuning sample, LDpred2-auto, but the authors showed 

the two methods give similar results. SBayesR assumes that the SNP effects are drawn from a 
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mixture of four distributions, which allows more flexibility in distributions of SNP effects by 

varying the proportion of SNPs in each distribution. Hence, SBayesR can fit essentially any 

underlying architecture in term of variance explained by each SNP so that the SBLUP, 

LDpred2-Inf and LDpred2 models are, in principle, special cases of the mixture model used 

in the SBayesR (although method implementations are different). In addition to traits with a 

highly polygenic genetic architecture, we have recently shown that SBayesR outperforms 

other methods for two less polygenic diseases, Alzheimer’s disease (49) (which includes the 

APOE locus which has a very large effect size) and amyotrophic lateral sclerosis (50) (for 

which there is evidence of greater importance of low MAF variants compared to SCZ(51)). 

The original SBayesR publication showed that in both simulations and applications to real 

data, the method performed well across a range of traits with different underlying genetic 

architectures. MegaPRS uses four different priors for the distribution of SNP effect, i.e. 

Lasso, Ridge, BOLT-LMM, and BayesR (Table 1). It rescales SNP effects based on each of 

those priors and for each method selects the combination of parameters that maximises 

prediction in the tuning sample and then selects the best method amongst these. Hence, 

MegaPRS is a collection of the other methods and the SNP distribution selected varies 

depending on both tuning and target (Table S11). It selects BayesR 87% of the time when the 

tuning samples were large (otherwise BOLT-LMM) and selects Lasso 78% of the time when 

tuning samples were small. We implemented MegaPRS using the BLD-LDAK model 

recommended by the authors which assumes that the distribution of SNP effects depend on 

its allele frequency and functional annotation. While adding functional annotation to up or 

down weight SNPs is appealing, in practice there seemed to be no advantage in MegaPRS 

compared to LDpred2 and SBayesR that did not use functional annotations. Surprisingly, 

LDpred-funct method performed consistently less well than LDpred2-Inf, but this should be 

revisited as currently LDpred-funct is only available as a preprint (16).  
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Another study has compared 8 PGS methods for 8 disease/disorder traits (including MDD) 

and 3 continuous phenotypes comparing methods in two large community samples, the UK 

Biobank and the Twins Early Development Study (52). Consistent with our results, SBayesR 

attained a high prediction accuracy for MDD although they reported performance of 

SBayesR varied across traits. Since SBayesR expects effect size estimates and their standard 

errors to have properties consistent with the sample size and with the LD patterns imposed 

from an external reference panel, if GWAS summary statistics have non-ideal properties 

(perhaps resulting from meta-analysis errors or approximations) then SBayesR may not 

achieve converged solutions. SBayesR, in general, is more sensitive to any inconsistent 

properties between GWAS and LD reference samples than those methods that select hyper-

parameters based on cross-validation in a tuning sample, such as LDpred2 (15). We note that 

the LDpred-funct preprint reported SBayesR to perform well across a range of quantitative 

and binary traits. A key advantage of SBayesR is that there is no need for the user to tune or 

select model or software parameters. Moreover, it does not need a tuning cohort to derive 

SNP effect weights but learns the genetic architecture from the properties of the GWAS 

results. Computationally it is also very efficient, using one CPU, it takes approximately 2 

hours to generate SNP weights based on each discovery sample and predict into the left-out-

cohort using a MCMC chain of 10,000 iterations (the computing time can be reduced by 

running a shorter chain since a negligible change in prediction accuracy was found after 

4,000 iterations), which compares to PRS-CS: 40 hours using 5 CPUs, LDpred2: 5 hours 

using 15 CPUs, MegaPRS: 1 hours using 5 CPUs. Last, given that SBayesR uses only 

HapMap3 SNPs that are mostly well-imputed it should be possible to provide these SBayesR 

SNP weights as part of a GWAS pipeline to apply in external target samples. 
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All methods are compared using their default parameters settings. An optimum setting of 

each method could potentially increase the prediction accuracy. Most likely the optimum 

parameter settings are trait (genetic architecture) dependent(13). Here, we find that all 

methods that more formally model the genetic architecture than PC+T perform better than the 

PC+T, but there is little to choose between those methods. For application in psychiatric 

disorders, which are all highly polygenic traits, we particularly recommend LDpred2, 

MegaPRS and SBayesR which consistently rank high in all comparisons.  
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Figure 1. Prediction results for SCZ case/control status using different PGS methods. 

The PGS were constructed from SCZ GWAS summary statistics excluding the target cohort 

and a tuning cohort (shading legend). Each bar reflects the median across 30 target cohorts, 

the whiskers show the 95% confidence interval for comparing medians. The area under curve 

(AUC) statistic (A) can be interpreted as the probability that a case ranks higher than a 

control. Panel (B) is the proportion of variance explained by PGS on the scale of liability, 

assuming a population lifetime risk of 1%. The third panel (C) is the odds ratio when 

considering the odds of being a case comparing the top 10% vs bottom 10% of PGS. The 

bottom panel (D) is the odds of being a case in the top 10% of PGS vs odds of being a case in 

the middle of the PGS distribution. The middle was calculated as the averaged odds ratio of 
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the top 10% ranked on PGS relative to the 5th decile and 6th decile. PC+T (also known as 

P+T) is the benchmark method which is shown in orange. Pink shows the methods that use 

an infinitesimal model assumption. The green shows the methods that model the genetic 

architecture, with light green for the methods using a tuning cohort to determine the genetic 

architecture of a trait; dark green shows the methods learning the genetic architecture from 

discovery sample, without using a tuning cohort. Dark orange is for MegaPRS using the 

BLD-LDAK model that assume the distribution of SNP effect depends on its allele 

frequency, LD and function annotation. MegaPRS assign four priors to each of SNP: 

LASSO, Bridge, BOLT-LMM, BayesR. Each prior has different hyperparameters that 

identified using the tuning cohort. The dashed grey lines are the maximum of the average 

across the four tuning cohorts. The sample sizes of the tuning cohorts are swe6: 1094 

cases,1219 controls; lie2: 137 cases, 269 controls; msaf: 327 cases, 139 controls; gras: 1086 

cases, 1232 controls. 
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Figure 2. Sensitivity analyses using different tuning cohorts comparing different PGS 

methods. 

Differences in the AUC of SCZ of a PGS method when using different tuning cohorts. The 

different bars in each method (x-axis) refer to different validation cohorts ordered by sample 

size. The y-axis is the AUC difference when using alternative tuning cohort (i.e. lie2 (137 

cases, 269 controls), msaf (327 cases, 139 controls), or gras (1086 cases, 1232 controls)), 

compared to ‘swe6’ (1094 cases, 1219 controls). The MAF QC threshold is 0.1. Note: 

SBLUP, LDpred2-Inf and LDpred-funct, PRS-CS-auto and SBayesR do not need a tuning 

cohort, but serve as a benchmark to the other methods which need a tuning cohort. These 

methods differ when a different tuning cohort is left out because the discovery GWAS also 

changes.  
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Figure 3. Sensitivity analyses using different MAF quality control thresholds. 

Differences in AUC of SCZ of a PGS method when using different MAF QC thresholds. The 

different bars in each method (x-axis) refer to different validation cohorts ordered by sample 

size. The y-axis is the AUC difference between analyses using A) MAF<0.05 and MAF <0.1 

B) MAF<0.01 and MAF <0.1 as a QC threshold. The tuning cohort is ‘swe6’. 
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Table titles and legends 

Table 1. Summary of methods used to generate PGS 

Method Distribution of SNP effects (!) Tuning 
sample 

Pre-defined 
parameters 

Parameters estimated in 
tuning sample 

PC+T None  Yes - P value threshold 

SBLUP #~%	(0,
ℎ!"

+) 
ℎ!": SNP-based heritability, m: number of SNPs;	, = +(1 − ℎ!")/ℎ!" 

No ,  
LD radius in kb - 

Ldpred2-
Inf Same as SBLUP No 

ℎ!", 
LD radius in 
cM or kb 

- 

LDpred-
funct 

##~%	(0, 12#") 
∑ 1$!"%&
'
#() 12#" = ℎ!", 1 is a normalizing constant 

2#" is the expected per SNP-heritability under the baseline-LD 
annotation model estimated by stratified LDSC from the discovery 
GWAS within LDpred-funct software 

No 

ℎ!", 
LD radius in 
number of 
SNPs 

- 

LDpred2 
##~4%	(0,

ℎ!"

5+), 	with	probability	of	5

0,with	probability	of	1 − 5
 

When sparsity is “true” the ## for the SNPs is the (1-	5) partition are 
all set to zero. 

Yes 

ℎ!", 
5 software 
default values, 
LD radius in 
cM or kb 

5, sparsity	

Lassosum B(C) = D*D + (1 − F)C*G+*G+C − 2C*G*D+sC*C+2	,‖!‖)) 
G+: genotype of LD reference Yes LD Blocks ,, F 

PRS-CS ##~%	(0,
2"

J K#) 
K#~L	(M, N#) 

Yes 
a=1, b=0.5 
Sample size 
LD Blocks  
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N#~L	(P, O), 
O	is a global scaling parameter. 
n is sample size 

PRS-CS-
auto Same as PRS-CS, but estimates O from the discovery GWAS. No 

a=1, b=0.5 
Sample size 
LD Blocks 

- 

SBayesR 

##|	R, 2,"~

⎩
⎪
⎨

⎪
⎧ 0,with	probability	of	5)
%	(0, W"2,"), with	probability	of	5"

⋮
%	(0, W-2,"), with	probability	of	1 − ∑ 5-./)

-()

  

2,"~YJZ − ["	(\. B. = 4)  
50~_`a(b) , estimated from discovery GWAS in SBayesR software 
W0 are scaling parameters 

No 

LD radius in 
cM or kb, 
C = 4, 
W software 
default values 

- 

MegaPRS 

Lasso: ##~_c	(,/2#) 
Ridge regression: ##~%	(0, Z2#") 

BOLT-LMM: ##~d
%	(0, (1 − B")/52#"), 	with	probability	of	5

%	(0, (B")/(1 − 5)2#"), with	probability	of	1 − 5
 

B"is the proportion of the total mixture variance in the second normal 
distribution. 
BayesR: similar to SBayesR with C=4, and 50 and W0 estimated in the 
tuning sample 
2#" is the expected per SNP-heritability under BLD-LDAK model 
using SumHer 

Yes 

LD radius in 
cM or kb, 
Parameters 
used in BLD-
LDAK,  
Grid search 
parameter 
values for each 
method 

 
The tuning cohort is used 
to estimate the parameters 
that maximize prediction 
for each model, and from 

these the model that 
maximizes prediction is 

selected.  

Distributions: N: normal distribution; G: gamma distribution; YJZ − [": inverse chi-squared distribution, _`r: Dirichlet distribution;	_c: Double 
exponential distribution; ‖C‖)) = ∑ |#0|0 . When ℎ!" (SNP-based heritability) is a pre-defined parameter it is estimated from the discovery GWAS, 
where “discovery GWAS” is the genome-wide set of association statistics (SNP ID, reference allele, frequency of reference allele, association 
effect size for reference allele, standard error of effect size, association p-value, sample size). We use bold for matrix notation and italics for 
scalar notation. cM: centimorgan; kb: kilobase pair 
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Data 

 
Schizophrenia GWAS summary statistics, were available from a total of 37 European 

ancestry cohorts reported in Pardiñas et al(1), comprising a total of 31K SCZ cases and 41K 

controls and 8M imputed SNPs. This included 34 cohorts from the PGC Schizophrenia (SCZ) 

Working group for which individual level genotype data were available. Detailed information 

about the cohorts is provided elsewhere(2) but is summarised in Table S1. PGS were 

calculated in each of the 30 PGC cohorts (target samples) using the GWAS discovery sample 

based on a meta-analysis of 37-2 = 35 cohorts i.e., the target sample was excluded from the 

discovery sample as well as a sample selected to be a tuning sample. Analyses were repeated 

using four different tuning samples, two of which were large (swe6:1094 cases and 1219 

controls, gras: 1086 cases and 1232 controls) and two were small (lie2: 137 cases, 269 

controls; msaf: 327 cases, 139 controls). 

 

Major depression GWAS summary statistics from European ancestry studies comprised 

almost 13M imputed SNPs from 248K cases and 563K controls (3), which included data 

from the PGC Major Depressive Disorder (MDD) Working group (previously denoted as 

PGC29, but here MDD29). MDD29 includes data from 29 research study cohorts, described 

elsewhere (3-10) and summarised in Table S2. Individual level genotype data were available 

for 15K cases and 24K controls from 26 cohorts. We left one cohort out of those 26 cohorts 

in turn as the target sample, and then meta-analysed the remaining 28 samples with the other 

MDD GWAS summary statistics results to make the discovery samples. A cohort from 

Münster (3), not included in the discovery GWAS was used as the tuning sample (845 

clinical defined MDD cases and 834 controls). Although the discovery sample meta-analyses 

include samples where the depression phenotype is self-reported rather than following a 
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structured clinical interview, we refer to the prediction as MDD since the PGC target cohorts 

are of MDD cases and controls.  

 

The datasets stored in the PGC central server follow strict guidelines with local ethics 

committee approval. 

 

Prediction methods  

P-value based clumping and thresholding (PC+T)  

In the PC+T method (also known as P+T or C+T)(11, 12) GWAS summary statistics are 

clumped to be approximately independent using a LD threshold, r2. From this quasi-

independent genome-wide SNP list, SNPs are selected by thresholding on a pre-specified 

association p-value, Pt. We evaluated PC+T as implemented in Ricopili (13) as used in 

analyses of the (Psychiatric Genomics Consortia) which uses PLINK (14) to clump the SNP 

set using r2 = 0.1 within 500 kb windows, and PtÎ (5e-08, 1e-06, 1e-04, 1e-03, 0.01, 0.05, 0.1, 

0.2, 0.5, 1), where Pt =1 means that all SNPs from the LD-clumped list are included. In 

applications of PC+T it is common for results from the most associated Pt to be reported 

(including the application in the software PRSice (15) which uses a continuous Pt range), but 

this approach utilises information from the target cohort and hence introduces a form of 

winner’s curse. Here, the Pt threshold applied in target cohorts is the Pt threshold that 

maximised prediction in the tuning cohort. 

 

SBLUP 

SBLUP (16) is a method that re-scales the GWAS SNP effect estimates using an external LD 

reference panel to transform the ordinary least-squares estimates to approximate the best 

linear unbiased prediction (BLUP) solutions. This method assumes an infinitesimal model 
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where SNP effects are drawn from a normal distribution. All genome-wide SNPs are used to 

build the PGS. Hence, for example, consider a genomic region with a single causal variant 

but with many SNPs in the region correlated with the causal variant and correlated with each 

other. In this case the SBLUP effect size estimate is “smeared” across the correlated SNPs, 

but with the total contribution to risk expected to represent the best estimate of the signal 

from the underlying causal variant. This method is implemented within the software package 

GCTA (17).  

  

LDpred2 and LDpred2-Inf  

LDpred2 (18) uses the GWAS summary statistics and LD information from the external LD 

reference sample to infer the posterior mean effect size of each SNP, conditioning on the 

SNP effect estimates of other correlated SNPs. This method assumes a point-normal prior on 

the distribution of SNP effects such that only a fraction of SNPs with non-zero estimated 

effects are selected for inclusion in the PGS. LDpred2 has three hyperparameters: the 

fractions of causal SNPs (p, but denoted p in the original paper), SNP-based heritability (ℎ!"), 

and sparsity. We used the same parameter setting as in (18). The fractions of causal SNPs p 

values are equally spaced on log scale, i.e. p Î (0.00010, 0.00018, 0.00032, 0.00056, 

0.00100, 0.00180, 0.00320, 0.00560, 0.01, 0.018, 0.032, 0.056, 0.1,0.18, 0.32, 0.56 ,1). The 

values for ℎ!"  are set at 0.70, 1 and 1.40 folds of the LDSC estimate. The sparsity choices are 

“true” or “false”. Normally, due to sampling variation, the SNPs in the subset with zero 

variance do not have exactly zero effect size; when sparsity is “true”, it forces those SNPs 

with exactly zero effects. The hyperparameters that maximise the prediction in the tuning 

sample are applied in the target sample; those values can differ between target cohorts even 

though the same tuning cohort is used, reflecting the properties of the discovery sample 

which may change with each left-out target sample. LDpred2-Inf is equivalent to SBLUP as 
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the genetic architecture model assumes all SNPs have non-zero contribution of the phenotype 

variance. In software applications the results can differ because of the LD reference sample 

used and the assumptions for determining the LD window. The LD reference used in 

LDpred2 was the one provided on its website, which was calculated based on 362,320 UK 

Biobank individuals. Despite, the potential differences in the software applications, we 

observed a high concordance of results between SBLUP and LDPred-Inf (Table S7). 

LDpred2 applied here used the grid-model. We did not include the auto-model (which does 

not need a tuning sample), because firstly, the LDPred2 paper (18) shows it has similar 

performance to the grid-model. Secondly, the LDPred2 software requires individual level 

genotype data of the LD reference to implement the auto-model which is not provided with 

the software whereas it does provide an LD matrix derived from individual level genotype 

data. The LDpred2 was run genome-wide, instead of per chromosome, since it attains higher 

prediction accuracy(18). 

 

LDpred-funct  

LDpred-funct (19) is an extension of the LDpred-Inf (SBLUP equivalent) model but 

leverages trait-specific functional enrichments relative to the baseline-LD model (20) to 

up/down-weight SNP effects. The functional annotations include coding, conserved, 

regulatory and LD-related annotation. In the baseline-LD model, the enrichment of each 

category is jointly calculated via stratified LD score regression (21). LDpred-funct has a non-

infinitesimal model version, but besides the discovery and training samples, it needs the 

phenotype of the target samples to identify a parameter (the number of bins, K, in the original 

paper (22)). Given that this method is still under peer review and given that we wish to avoid 

parameter estimation in the target sample, we continued only with the infinitesimal model 

version. 
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MegaPRS  

We applied the MegaPRS (23) software based on the BLD-LDAK model as recommended by 

the authors. The BLD-LDAK model assumes the expected per SNP heritability varies with its 

MAF, LD, and functional annotation, compared to other compared methods (e.g. SBLUP, 

LDpred-Inf) that assume the expected per SNP heritability is constant (24). Based on the 

estimated per SNP heritability, MegaPRS constructs PGS using four priors: Lasso, Ridge, 

BOLT-LMM, BayesR. Each of those priors has different hyperparameters. We used the same 

parameters as the original paper (23), which generates 100 Lasso models, 11 Ridge 

regression, 132 BOLT-LMM, and 84 BayesR models. For BayesR the genetic architecture 

parameters are the same as SBayesR, assuming 4 distributions of SNP effects, but 

determining the ## proportions and their scaling factors through a grid search in the tuning 

cohort. See the MegaPRS paper for more details of these methods, Zhang et al.(23). 

Following Zhang et al., we used 20K individuals with European ancestry from UK Biobank 

as the reference panel. The SNP annotation information used in the BLD-LDAK model were 

from ldak website (http://dougspeed.com/bldldak/).  

 

Lassosum 

Using GWAS summary statistics and a LD reference panel, Lassosum (25) constructs the 

PGS in a penalized regression framework. Lassosum is a deterministic method, and a convex 

optimization problem. It rescales the SNPs effect $ by minimizing %($) = ($( +

(1 − ,)$$-%$-&$ − 2$$-$(+s$$$+2	0‖$‖'', where y is the vector of phenotypes, -% is the 

genotype of LD reference; - is the genotype data of discovery sample, but this is not needed 

because -$(/N is the GWAS summary statistics that is known. Same as the original method 

paper, , set as 0.2, 0.5, 0.9, or 1. 0	are 20 values sequenced between 0.001 and 0.1 that 
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equally spaced on the log-scale. The optimal hyperparameters for , and 0 are identified in the 

tuning cohort. The current version of Lassosum cannot take a reference panel larger than 

20K, and 5K is suggested (https://github.com/tshmak/lassosum). Hence, 5K unrelated UK 

Biobank individuals were randomly selected as the reference panel. We used only HapMap3 

SNPs. 

 

PRS-CS and PRS-CS-auto  

PRS-CS (26) is also built under a Bayesian regression framework. Unlike LDpred2 which 

assumes a point-normal distribution as a prior, which is discrete, PRS-CS assumes a 

continuous shrinkage prior on the SNP effects. PRS-CS was implemented using the software 

default settings and with the LD reference panel provided with the PRS-CS software, which 

is computed using the 1000 Genomes samples and HapMap3 SNPs. In PRS-CS, for the 

global scaling parameter which is applied to all SNP effects 4, the search grid is 4'/"∈ 

(0.0001, 0.001, 0.01, 0.1, 1). The 4 that produces the best predictive performance in a tuning 

data set is selected for use in the target sample. In PRS-CS-auto, 4 is automatically learnt 

from GWAS summary statistics and no tunning sample is needed. 6 is a local marker-

specific parameter which is drawn from the Gamma distribution, i.e. 6)~89::9(9, <)) and 

<)~89::9(=, 1). We used the default parameters proposed by the authors of a = 1 and b = 

0.5. 

 

SBayesR  

SBayesR (27) is a method that re-scales the GWAS SNP effect estimates based on Bayesian 

multiple regression. SBayesR assumes that the standardised SNP effects are drawn from a 

mixture of C=4 zero-mean normal distributions with different variances (one of the variances 

is zero, with a probability of p1), indicating that only a fraction of SNPs (1-p1) have non-zero 
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estimated effects which contribute to the phenotype. Moreover, the contributions of SNPs in 

different distributions differ because of different variances. Here, we evaluated SBayesR in 

the default setting. The scaling factor > for the variance of each mixture component are set as 

0, 0.01, 0.1, and 1 in this order. The banded LD matrix was downloaded from GCTB website 

(https://cnsgenomics.com/software/gctb/#Download), which was built based on the HapMap3 

SNPs of randomly selected and unrelated 10K UK Biobank individuals. The windows size 

used to estimate the LD is 3cM, which is the same as LDpred2. Whereas LDpred2 estimates 

p from a tuning sample, SBayesR estimates p from the GWAS discovery sample, so no 

tuning sample is needed. LDpred2 has an auto version which does need the tuning sample, 

but it requires individual level genotype data of the LD reference which is not provided with 

the software whereas it does provide an LD matrix derived from individual level genotype 

data.  

 

AUC vs variance explained on the liability scale 

Although covariates were not included when calculating AUC the impact is small. For 

example, for SCZ the maximum median variance in liability was for MegaPRS at 9.2%. 

Assuming lifetime risk of SCZ of 0.01 the AUC expected from normal distribution theory(4) 

(see pseudo-code section) is 0.722, compared to the mean reported of 0.731. For MDD the 

maximum median variance in liability was for SBayesR at 3.5%. Assuming a lifetime risk of 

0.15 the expected AUC is 0.596 compared to the mean reported of 0.599. The AUC and 

variance in liability from the model including 6 principal components and PGS in the 

regression is in Table S3 and Table S5.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2021. ; https://doi.org/10.1101/2020.09.10.20192310doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192310
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Supplement 

41 

 

 
 

Figure S1. PGS in top 10% of SCZ cases and controls.  

The mean of the PGS for the top 10% cases (colored boxes) and for the top 10% of controls 

(grey boxes) in PGS standard deviation (SD) unit scale. The controls have mean PGS of zero 

and SD of 1. Subfigures are the results using different tuning cohorts.  

Since the PGS are normally distributed, as expected the mean PGS for controls in the top 

10% PGS is ~1.75 SD units, whereas the top 10% of cases have mean value of 2.65 control 

sample SD units using SBayesR. These mean values of the top 10% in cases equate to 

expectations from the population of the top 1.1% SCZ.   
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Figure S2. Prediction of MDD case/control status using different PGS 

methods. 

A)  The area under curve (AUC) statistic. The AUC is a measure for the prediction 

accuracy, which indicates the probability that a case ranks higher than a control. The 

predictors were constructed from GWAS summary statistics of UK Biobank(4, 28), 

23andMe(5), GERA(29), iPSYCH (7), deCODE (8), GenScotland (9, 10), PGC-

MDD29 excluding the target cohort. The target cohorts comprised 26 of the 29 

cohorts in MDD29. A cohort from Münster (845 clinical defined MDD cases and 834 

controls), not included in the MDD29, was used as the tuning sample. Each bar 

reflects the median AUC across 26 target cohorts, the whiskers show the 95% 

confidence interval for comparing medians.  
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B)  The proportion of variance explained by PGS on the scale of liability, assuming a 

population lifetime risk of 15%. 

C) The odds ratio when considering the odds of being a case comparing the top 10% vs 

bottom 10% of PGS.  

D) The odds ratio when considering the odds of being a case comparing the top 10% vs 

those in the middle of the PGS distribution, calculated as the averaged odds ratio of 

the top 10% ranked on PGS relative to the 5th decile and 6th decile.  

E) The mean of the PGS for the top 10% cases (coloured boxes) and for the top 10% of 

controls (grey boxes) in PGS standard deviation (SD) unit scale so that controls have 

mean PGS of zero and SD of 1. Since the PGS are normally distributed, as expected 

the mean PGS for controls in the top 10% PGS is ~1.75 SD units, whereas the top 

10% of cases have mean value of 2.10 control sample SD units for MDD cases, using 

SBayesR. These mean values of the top 10% in cases equate to expectations from the 

population of the top 4.7% for MDD.  
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Figure S3. Individual SCZ cohort results and relationship with potential 

confounders. 

The area under the curve (A and C panels) and the proportion of variance explained by PGS 

on the liability scale (B and D panels) of schizophrenia predicted by different PGS methods 

in each of target cohorts, compared to PC+T method. x-axis of A and B are the target cohorts 

ordered by sample size, increasing from left (Ncases = 71, Ncontrols =69) to right (Ncases = 

3466, Ncontrols =4297). x-axis of C and D are the sample sizes of each target cohorts. The 

lines in C and D are the regression lines of y and x by each method. For each method, when 

regressing AUC difference on the sample size of the target cohort, the p-values are all larger 

than 0.05. Similarly, the p-values of regressing the proportion of variance explained by PGS 

on the sample size are larger than 0.05. E) The proportion of variance explained on the 

liability scale against first 6 principal components (PCs), which were estimated from directly 

genotyped SNPs shared across cohorts. The x-axis is the mean value of the PC in the cohort. 

The regression p-values were: PC1: 0.25-0.56, PC2: 0.001-0.004, PC3: 0.014-0.052, PC4: 

0.004-0.024, PC5: 0.016-0.049, PC6: 0.009-0.056, with the range reflecting different 

methods. Using the 23 European cohorts collected in a single country, we found in regression 

of each PC on latitude, longitude and SNP-array (Affymetrix, Illumina-nonOmni, Illumina 

Omi) the following significant associations (P<0.01): PC1: latitude & Array, PC2: longitude, 

PC3: latitude & longitude, PC4: Array, PC5: latitude & array, recognising that latitude and 

longitude could represent phenotype as well as genetic ancestry differences. 
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Figure S4. Individual MDD cohort results and relationship with 

potential confounders. 

The area under the curve (A and C panels) and the proportion of variance explained by PGS 

on the liability scale (B and D panels) of major depression predicted by different PGS 

methods in each of target cohorts, compared to PC+T method. x-axis of A and B are the 

target cohorts ordered by sample size, increasing from left (Ncases = 120, Ncontrols =126) to 

right (Ncases = 1,097, Ncontrols =2,663). x-axis of C and D are the sample sizes of each 

target cohorts. The lines in C and D are the regression lines of y and x for each method. For 

each method, when regressing AUC difference on the sample size of the target cohort, the p-

values are all larger than 0.05. Similarly, the P-values of regressing the proportion of variance 

explained by PGS on the sample size are larger than 0.05. E) The proportion of variance 

explained on the liability scale against first 6 principal components (PCs), which were 

estimated from directly genotyped SNPs shared across cohorts. The x-axis is the mean value 

of the PC in the cohort. The regression p-values were: PC1: 0.39-0.76, PC2: 0.09-0.65, PC3: 

0.28-0.64, PC4: 0.16-0.68, PC5: 0.62-0.96, PC6: 0.59-0.85, with the range reflecting different 

methods. Using the 15 European cohorts collected in a single country, we found in regression 

of each PC on latitude, longitude and SNP-array (Affymetrix, Illumina-nonOmni, Illumina 

Omi) the following significant associations (P<0.01): PC1: latitude, PC2: longitude, 

recognising that latitude and longitude could represent phenotype as well as genetic ancestry 

differences. 
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Figure S5. Sensitivity analysis: INFO score and MAF. 

Differences in AUC of SBayesR when using different quality control thresholds. 

The different bars refer to different target cohorts ordered by its sample size. 
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Figure S6. PGS densities of SCZ cases and controls in each target 

cohort ordered by sample size. 

Light green shows the PGS density of controls predicted by different methods. Light purple 

shows the PGS density of cases predicted by different methods. The PGS were scaled to SD 

units of controls. Thus, the mean and variance of PGS in controls are zero and one, 

respectively. The mean and variance of PGS in cases are in Table S3 (SD of PGS of cases 

(SD units of controls)).  
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Figure S7. PGS densities of MDD cases and controls each target cohort 

ordered by sample size. 

Light green shows the PGS density of controls predicted by different methods. Light purple 

shows the PGS density of cases predicted by different methods. The PGS were scaled to SD 

units of controls. Thus, the mean and variance of PGS in controls are zero and one, 

respectively. The mean and variance of PGS in cases are in Table S5 (SD of PGS of cases 

(SD units of controls)).  
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Figure S8. PGS densities of SCZ cases and controls estimated by 

different methods across the target cohorts.  

The mean PGS of cases is, on average, 0.85 standard deviation units (calculated in controls) 

and refer to Table S3 for estimate of each method. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2021. ; https://doi.org/10.1101/2020.09.10.20192310doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192310
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Supplement 

52 

 

 

Figure S9. PGS densities of MDD cases and controls estimated by 

different methods across the target cohort.  

The mean PGS of cases is, on average, 0.34 standard deviation units (calculated in controls) 

and refer to Table S5 for estimate of each method. 
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Pseudo code 
 
################################################## 
# PC+T 
################################################## 
clump_nav3 --noindel \ 
--pfile gwas_no_val_tun.gz \ 
--hq_f .01 \ 
--hq_i .6 \ 
--outname $coh_clumpOut \ 
 --clu_p1 1.0 \ 
--clu_p2 1.0 \ 
--clu_window 500 \ 
--clu_r2 0.1 \ 
--refdir 1KG/pop_EUR \ 
--popname eur  
 
 
################################################## 
# SBLUP 
################################################## 
gcta64 --bfile LD_reference \ 
--chr chrid \ 
--cojo-file daner_no_gwas.ma \ 
--cojo-sblup lambda \ 
--cojo-wind 1000 \ 
--thread-num 5 \ 
--out scz_tun_chr_sblup_prs 
 
 
################################################## 
# LDpred2  Inf+grid 
################################################## 
info_snp <- snp_match(sumstats, map_ldref) 
sd_ldref <- with(info_snp, sqrt(2 * af_UKBB * (1 - af_UKBB))) 
sd_ss <- with(info_snp, 2 / sqrt(n_eff * beta_se^2)) 
 
is_bad <- 
  sd_ss < (0.5 * sd_ldref) | sd_ss > (sd_ldref + 0.1) | sd_ss < 0.1 | sd_ldref < 0.05 
 
df_beta <- info_snp[!is_bad, ] 
 
tmp <- tempfile(tmpdir = "tmp-data") 
 
for (chr in 1:22) { 
  cat(chr, ".. ", sep = "") 
  ind.chr <- which(df_beta$chr == chr) 
  ind.chr2 <- df_beta$`_NUM_ID_`[ind.chr] 
  ind.chr3 <- match(ind.chr2, which(map_ldref$chr == chr)) 
  corr_chr <- readRDS(paste0("ld-ref/LD_chr", chr, ".rds"))[ind.chr3, ind.chr3] 
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  if (chr == 1) { 
    corr <- as_SFBM(corr_chr, tmp) 
  } else { 
    corr$add_columns(corr_chr, nrow(corr)) 
  } 
} 
 
# Heritability estimation of LD score regression 
(ldsc <- with(df_beta, snp_ldsc(ld, ld_size = nrow(map_ldref), 
                                chi2 = (beta / beta_se)^2, 
                                sample_size = n_eff, 
                                ncores = NCORES))) 
h2_est <- ldsc[["h2"]] 
 
# LDpred2-inf 
beta_inf <- snp_ldpred2_inf(corr, df_beta, h2 = h2_est) ##beta output 
beta_inf_out<-cbind(df_beta[,c('rsid','a0','a1')],beta_inf) 
print("finished beta_inf") 
 
#LDpred2-grid 
(h2_seq <- round(h2_est * c(0.7, 1, 1.4), 4)) 
(p_seq <- signif(seq_log(1e-4, 1, length.out = 17), 2)) 
 
params <- expand.grid(p = p_seq, h2 = h2_seq, sparse = c(FALSE, TRUE)) 
beta_grid <- snp_ldpred2_grid(corr, df_beta, params, ncores = NCORES) 
beta_grid<-as.data.frame(beta_grid) 
colnames(beta_grid)<-paste(params$p,params$h2,params$sparse,sep='_') 
 
betaall<-cbind(beta_inf_out,beta_grid) 
 
write.table(betaall,file='ldpred2.scores',col.names=T,row.names=F 
            ,append=F,quote=F,sep='\t') 
print("finished beta_grid") 
 
 
################################################## 
# ldpredfunct 
################################################## 
Python-2.7.9/python ldpredfunct.py \ 
--gf=LD_reference \ 
--FUNCT_FILE=functional_matrix_no_val.txt \ 
--coord=coord_out_no_val_tun \ 
--ssf=gwas \ 
--N=N \ 
--H2=h2 \ 
--out=no_tun_tun_ldpredfunct_prs \ 
--posterior_means=no_coh_tun_ldpredfunt_out 
 
################################################## 
# lassosum 
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################################################## 
library(lassosum) 
library(parallel) 
library(data.table) 
 
ss<-fread(trainGWAS,header=TRUE) 
cor<-p2cor(p=ss$P,n=ss$NMISS,sign=log(ss$OR),min.n=3000) 
ref.bfile<-'ukbEURu_hm3_all_v3_5k' 
cl <- makeCluster(5) 
out<-lassosum.pipeline(cor=cor,chr=ss$CHR,pos=ss$BP 
                    ,A1=ss$A1,A2=ss$A2 
                    ,ref.bfile=ref.bfile 
                    ,LDblocks='EUR.hg19' 
                    ,trace=1 
                    ,destandardize=F 
                    ,cluster=cl) 
betalist<-out$beta 
#one<-betalist$0.2 
betaout<-as.data.frame(matrix(unlist(betalist),byrow=F,ncol=80)) 
colnames(betaout)<-paste(rep(paste0('S ',names(betalist)),each=20),1:20,sep='_') 
betaout<-cbind(out$sumstats,betaout) 
 
 
################################################## 
# PRS-CS 
################################################## 
for chrid in {1..22} 
do 
for pv in 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00 
do 
 
/Python-2.7.9/python PRScs.py --ref_dir=LD_reference \ 
--bim_prefix=gwas.bim \ 
--sst_file=daner_no_val_tun.prscs \ 
--n_gwas=sample_size \ 
--out_dir=val_tun_chr \ 
--chrom=${chrid} \ 
--phi=${pv}  
done 
done 
 
################################################## 
# PRS-CS-auto 
################################################## 
for chrid in {1..22} 
do 
/Python-2.7.9/python /PRScs.py --ref_dir=LD_reference \ 
--bim_prefix=gwas.bim \ 
--sst_file=daner_no_val_tun.prscs \ 
--n_gwas=sample_size \ 
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--out_dir=val_tun_chr \ 
--chrom=${chrid}  
done 
 
################################################## 
# SBayesR 
################################################## 
gctb --sbayes R \ 
--mldm /ukbEURu_hm3_mldm_list.txt \ 
--pi 0.95,0.02,0.02,0.01 \ 
--gamma 0.0,0.01,0.1,1 \ 
--gwas-summary /daner_no_gwas.ma \ 
--chain-length 10000 \ 
--burn-in 2000 \ 
--exclude-mhc \ 
--out-freq 10 \ 
--out daner_no_gwas_sbayesr 
 
 
################################################## 
# MegaPRS 
################################################## 
#Use SumHer to estimate total and per-SNP heritability given BLD-LADK model 
ldak5.1.linux.fast --cut-weights sections --bfile UKB_LD50k  
ldak5.1.linux.fast --calc-weights-all sections --bfile UKB_LD50k  
mv sections/weights.short bld65 
#[NOTE bld1…bld64 were download from LDAK Website] 
 
ldak5.1.linux.fast --calc-tagging bld.ldak --bfile UKB_LD50k --ignore-weights YES \ 
    --power -.25 --annotation-number 65 --annotation-prefix bld --window-kb 1000 --save-
matrix YES 
 
# identify high LD region 
ldak5.1.linux.fast --cut-genes highld --bfile UKB_LD50k --genefile highLD.txt 
 
# Run SumHer 
ldak5.1.linux.fast --sum-hers train_tun_val_bld --tagfile bld.ldak.tagging \ 
    --summary size_train_tun_val.ldak --check-sums NO --matrix bld.ldak.matrix \ 
    --exclude genes.predictors.used 
 
#  Prediction 
# Step 1 - Calculate predictor-predictor correlations 
ldak5.1.linux.fast  --bfile UKB_LD50k --calc-cors ukb_cors --window-kb 3000 
 
# Step 2- Estimate effect sizes for training and full prediction models 
ldak5.1.linux.fast \ 
      --mega-prs tun_val_bld \ 
      --model mega \ 
      --bfile UKB_LD50k  \ 
      --cors ukb_cors \ 
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      --ind-hers train_tun_val_bld.ind.hers \ 
      --summary size_loo_tun_val.ldak # [note: training + testing cohorts (full GWAS)] 
      --summary2 size_train_tun_val.ldak # [note: training cohort only] 
      --window-kb 1000 --allow-ambiguous YES \ 
      --extract comm_tunval_2 
 
# Step 3 - Determine the best model 
ldak5.1.linux.fast --calc-scores tun_val_bld \ 
      --bfile UKB_LD50k \ 
      --scorefile tun_val_bld.effects.train \ 
      --summary tun.ldak # [Note GWAS of testing cohort] 
      --power 0 \ 
      --final-effects tun_val_bld.effects.final \ 
      --extract commsnp_tunval_3 # [note use only overlapped SNPs] 
      --allow-ambiguous YES \ 
      --exclude genes.predictors.used 
 
################################################## 
#subroutine to calculate from normal distribution theory the 
# Wray NR, Yang J, Goddard ME, Visscher PM (2010) The Genetic Interpretation of Area  
#                under the ROC Curve in Genomic Profiling.  
# PLoS Genet 6(2): e1000864. doi:10.1371/journal.pgen.1000864 
r2toAUC<-function(K,r2){ 
  # K = Probability of disease (lifetime risk of disease)  
  # r2 = variance explained by PRS (or any predictor)  
  T0 = qnorm(1-K) #threshold for K 
  z = dnorm(T0)   #height of normal distrubution at threshold 
  i = z/K        # mean liability of case (Phneotypic SD=1) 
  v = -i*K/(1-K) #mean liability of controls 
  k =  i*(i-T0)  #variance reduction factor of cases 
  kv = v*(v-T0)  #variance reduction factor of contro 
  vcase=r2*(1-r2*k) # variance in PRS in cases 
  vcont=r2*(1-r2*kv)  # variance in PRS in controls 
#probaility a case ranks higher than a control 
  auc=pnorm((i-v)*r2/(sqrt(vcase+vcont))) 
   
  return(list(auc=auc)) 
} 
 
################################################## 
Pseudo code for AUC 
################################################## 
 
AUC:  
library(pROC) 
tstS = glm(Pheno01~PGS, data, family = binomial(logit)) # logit model 
aucvS = auc(data$ Pheno01,tstF$linear.predictors) 
 
 
AUC*: 
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 tstF = glm(Pheno01~PGS+6PCs, data, family = binomial(logit)) # logit model 
 aucvF = auc(data$ Pheno01,tstF$linear.predictors) 
 
 
################################################## 
Pseudo code for variance explained in liability scale 
################################################## 
# Lee et al (2012) A Better Coefficient of Determination for Genetic Profile Analysis.  
# Genetic Epidemiology 36 : 214–224 
# DOI: 10.1002/gepi.21614 
Variance explained in liability scale: 
lm0=lm(std_y~1,data) 
lmr=lm(std_y~6PCs, data) 
lmf=lm(std_y~PGS+6PCs, data) 
 
R2v=1-exp((2/N)*(logLik(lmr)-logLik(lmf))) 
R2=1-exp((2/N)*(logLik(lm0)-logLik(lmf))) 
 
h2l_r2 = h2l_R2(K,R2v,P) # Variance explained in liability scale 
h2l_r2_cov = h2l_R2(K,R2,P) #In our Supplementary Tables this is noted with *) 
 
 
h2l_R2 <- function(k, r2, p) { 
  # K baseline disease risk 
  # r2 from a linear regression model attributable to genomic profile risk score 
  # P proportion of sample that are cases 
  # calculates proportion of variance explained on the liability scale 
  x= qnorm(1-k) 
  z= dnorm(x) 
  i=z/k 
  C= k*(1-k)*k*(1-k)/(z^2*p*(1-p)) 
  theta= i*((p-k)/(1-k))*(i*((p-k)/(1-k))-x) 
  h2l_R2 = C*r2 / (1 + C*theta*r2) 
} 
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