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Abstract

Alzheimer’s disease (AD) involves many neurobiological alterations from molecular to
macroscopic spatial scales, but we currently lack integrative, mechanistic brain models
characterizing how factors across different biological scales interact to cause clinical
deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as
important signaling molecules and potential drug targets, are key mediators of interactions
between many neurobiological processes altered in AD. We present a neurotransmitter receptor-
enriched multifactorial brain model, which integrates spatial distribution patterns of 15
neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo
neuroimaging modalities (tau, amyloid-f and glucose PET, and structural, functional and arterial
spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-
driven model to a heterogeneous aged population (N=423, ADNI data), we observed that
personalized receptor-neuroimaging interactions explained about 70% (x 20%) of the across-
population variance in longitudinal changes to the six neuroimaging modalities, and up to 39.7%
(P<0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an
axis primarily affecting executive function. Notably, based on their contribution to the clinical
severity in AD, we found significant functional alterations to glutamatergic interactions affecting
tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently
affecting neural activity dysfunction, amyloid and tau distributions, as well as significant
cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest
effect on cognitive impairment (particularly executive function) in our AD cohort (N=25).
Furthermore, we demonstrate the clinical applicability of this approach by characterizing
subjects based on individualized “fingerprints’ of receptor alterations. This study introduces the
first robust, data-driven framework for integrating several neurotransmitter receptors, multi-
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modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables
further understanding of the mechanistic neuropathological basis of neurodegenerative
progression and heterogeneity, and constitutes a promising step towards implementing
personalized, neurotransmitter-based treatments.

Keywords— neurotransmitter receptors, multimodal neuroimaging, Alzheimer’s disease, whole-
brain computational model, personalized medicine.

Running title—Receptors altered in Alzheimer’s disease

Abbreviations— AD = Alzheimer’s disease; ADAS = Alzheimer’s Disease Assessment Scale;
ADNI = Alzheimer’s Disease Neuroimaging Initiative; ASL = arterial spin labeling; CBF =
cerebral blood flow; MCI = mild cognitive impairment; MMSE = Mini-Mental State
Examination; PHS = polygenic hazard score; = re-MCM = receptor-enriched multifactorial
causal model; ROI = region(s) of interest; SVD = singular value decomposition

Introduction

Alzheimer’s disease (AD) involves degenerative changes to several neurobiological processes
spanning molecular to macroscopic scales, including proteinopathies, modified gene expression,
synaptic alterations, vascular dysregulation, hypometabolism, and structural atrophy *. In AD,
these processes begin decades before the manifestation of cognitive deterioration , with vast
inter-patient heterogeneity in age of disease onset, spatial distribution of neuropathologies,
progression patterns, and clinical presentation 3. Currently, there are no effective disease-
modifying treatments for AD, despite many expensive attempts 2 °. These failures may be
attributed to: i) the use of a generalized medicine approach to treatment without considering the
pathophysiological and clinical heterogeneity of the disease *°°, ii) the focus on single disease
factors (e.g. tau and amyloid) whereas most biological mechanisms in AD are multi-factorial ’,
and, importantly, iii) an incomplete multi-scale understanding of how molecular and
macroscopic factors interact to cause disease progression ®.

Recently, multi-modal neuroimaging models ° '° have unravelled the temporal ordering of
macroscopic structural, functional, vascular and proteinopathy changes in AD. Furthermore,
personalized models of longitudinal neuroimaging data have been used to identify subject-
specific alterations of neurobiological processes including tau and amyloid accumulation, blood
flow, and neural activity at rest **. Nevertheless, such neuroimaging models lack a mechanistic
basis in molecular and cellular processes. While these modalities may involve molecular
imaging, such as amyloid or tau PET, their spatial resolution is limited in practice *2. Identifying
important pathways between truly microscopic-scale variables and observable macroscopic
neuroimaging (i.e. molecular PET and MRI) in AD would both advance the understanding of the
underlying biology and improve the selection of therapeutic targets tailored to an individual’s
particular disease subtype or presentation.

One particularly relevant class of molecules is neurotransmitter receptors, which regulate a
variety of biological processes known to be dysfunctional in neurodegeneration. As
neurotransmitter receptors are mediators of many relevant neurobiological factors, studying them
is critical for a complete mechanistic understanding and the potential treatment of abnormal
brain conditions such as neurodegeneration *. For example, dopamine receptors expressed by the
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cerebral microvasculature and glial cells appear to modulate the coupling between neural activity
and vascular response *3, which is altered in AD '*. As an organ, the brain consumes energy
disproportionately to its mass *°. A significant fraction of this energy expenditure is attributed to
synaptic signalling and molecular synthesis, with approximately 37% of this associated with
postsynaptic receptors and housekeeping processes '°. The production and degradation of
neurotransmitter receptors is a complex, dynamic process that is regulated in response to changes
in many variables, such as receptor activation, gene expression, and external stimuli *’. Since
these processes are energy-intensive, changes to their concentrations are likely to indicate
relevant biological alterations, making them a potential therapeutic target. Although it is not
primarily considered a neurotransmitter disease, AD is associated with dysfunction in several
important neurotransmitter receptor systems. Particularly, acetylcholine and glutamate receptors
are implicated in essential stages of a pathological neurodegenerative cascade, including
cholinergic hydrolysis and glutamatergic excitotoxicity *. Neurotransmitter receptor alterations
are also suspected of being a mechanistic pathway in healthy ageing *®. Thus, integrating
neurotransmitter receptors with macroscopic neuroimaging data has the potential to uncover
molecular pathways important to ageing and disease progression. However, in-vivo
neurotransmitter receptor imaging is difficult, due to the lack of specific in-vivo radiolabels *°.
Typically, receptor mapping has involved either post-mortem histology, or expensive positron
emission tomography (PET) imaging for a limited set of molecules with available radionuclides.
As such, large longitudinal in-vivo datasets for several receptors would be extremely expensive
or technologically infeasible to collect. Consequently, alterations to neurotransmitter systems
during disease progression are not well characterized *°.

Motivated by these concerns, we propose a whole-brain generative formulation integrating high
resolution in vitro neurotransmitter receptor density maps and in vivo multi-modal neuroimaging.
For the first time, this model allows a quantitative comparison of the causal role of different
neurotransmitter receptors and neuroimaging modalities in healthy aging and neurodegeneration.
Specifically, we fit subject-specific generative models of neuroimaging data in an aging
population covering the AD spectrum (N=423, ADNI data), augmented with 15 whole-brain
neurotransmitter receptor distribution patterns. We then treat the parameters of these
personalized models as subject-specific measures representing latent receptor-neuroimaging
interactions, and identify multi-scale interactions that explain mechanistic variability and
cognitive heterogeneity between AD subjects. We find that receptor density maps and their
interactions with neuroimaging significantly improve the fit of neuroimaging models, providing
a valid proxy for true, longitudinal in-vivo receptor imaging. Examining model parameters in AD
patients, we found an axis of variability between receptor-imaging interactions and cognitive
decline, primarily affecting executive function. Specifically, this axis is influenced by predictors
of tau distribution and resting state neural activity, concordant with recent reports in late-onset
AD 2! 22 Via this axis, mechanisms of glutamatergic, cholinergic and GABAergic receptor
interactions correlated significantly with cognitive decline in AD. In contrast, while receptor-
imaging interactions in healthy individuals did not vary significantly with cognitive status,
mechanisms affecting cerebral blood flow (CBF) changes and gray matter atrophy accounted for
most of the inter-individual heterogeneity. This work represents the earliest attempt to integrate
several neurotransmitter receptors and multi-modal neuroimaging data in a universal
formulation, representing a notable advance towards implementing individually-tailored
neurotransmitter-based diagnosis and treatment in neurodegeneration.
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Materials and Methods
Ethics Statement

The study was conducted according to Good Clinical Practice guidelines, the Declaration of
Helsinki, US 21CFR Part 50-Protection of Human Subjects, and Part 56—Institutional Review
Boards, and pursuant to state and federal HIPAA regulations (adni.loni.usc.edu). Study subjects
and/or authorized representatives gave written informed consent at the time of enrollment for
sample collection and completed questionnaires approved by each participating site Institutional
Review Board (IRB). The authors obtained approval from the ADNI Data Sharing and
Publications Committee for data use and publication, see documents http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf,
respectively.

Data description and processing

Study participants

This study used longitudinal data from N=423 participants (149 healthy, 151 early mild
cognitive impairment (EMCI), 103 late mild cognitive impairment (LMCI), and 20 AD-
diagnosed subjects at baseline) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu). Demographic information is summarized in Supplementary Table S1. At
least three different imaging modalities were acquired for each included subject (i.e. structural
MRI, fluorodeoxyglucose PET, resting functional MRI, Arterial Spin Labeling and/or Amyloid-
PET). The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), PET, other biological markers, and clinical and
neuropsychological assessments can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

Structural MRI acquisition/processing

Brain structural T1-weighted 3D images were acquired for all N=423 subjects. For a detailed
description of acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/.
All images underwent non-uniformity correction using the N3 algorithm %. Next, they were
segmented into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic maps, using
SPM12 (fil.ion.ucl.ac.uk/spm). Grey matter segmentations were standardized to MNI space **
using the DARTEL tool . Each map was modulated in order to preserve the total amount of
signal/tissue. Mean grey matter density and determinant of the Jacobian (DJ) % values were
calculated for the regions described in Methods: Data description and processing: Receptor
densities and brain parcellation. For each region, obtained grey matter density and DJ values
were statistically controlled for differences in acquisition protocols. Both measurements
provided equivalent modeling results. All the results/figures presented in this study correspond to
the DJ, which constitutes a robust local measure of structural atrophy.
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Fluorodeoxyglucose PET acquisition/processing

A 185 MBq (5 + 0.5 mCi) of [18F]-FDG was administered to each participant (N=418) and
brain PET imaging data were acquired approximately 20 min post-injection. All images were
corrected using measured attenuation. Also, images were preprocessed according to four main
steps °: 1) dynamic co-registration (separate frames were co-registered to one another lessening
the effects of patient motion), 2) across time averaging, 3) re-sampling and reorientation from
native space to a standard voxel image grid space (“AC-PC” space), 4) spatial filtering to
produce images of a uniform isotropic resolution of 8 mm FWHM, and 5) affine registration to
the participant’s structural T1 image. Next, using the registration parameters obtained for the
structural T1 image with nearest acquisition date, all FDG-PET images were spatially
normalized to the MNI space 2*. Regional standardized uptake value ratio (SUVR) values for the
regions considered were calculated using the cerebellum as reference region.

Resting fMRI acquisition/processing

Resting-state functional images were obtained using an echo-planar imaging sequence on a 3.0-
Tesla Philips MRI scanner for N=127 subjects. Acquisition parameters were: 140 time points,
repetition time (TR)=3000 ms, echo time (TE)=30 ms, flip angle=80°, number of slices=48, slice
thickness=3.3 mm, in plane resolution=3 mm and in plane matrix=64x64. Pre-processing steps
included: 1) motion correction, 2) slice timing correction, 3) alignment to the structural T1
image, and 4) spatial normalization to MNI space using the registration parameters obtained for
the structural T1 image with the nearest acquisition date, and 5) signal filtering to keep only low
frequency fluctuations (0.01-0.08 Hz) %’. For each brain region, our model requires a local (i.e.
intra-regional, non-network) measure of functional activity, in order to maintain mechanistic
interpretability and to prevent data leakage of network information into local model terms
(described further in Receptor-Enriched Multifactorial Causal Model). Due to its high
correlation with glucose metabolism 2 and validation as an AD-sensitive metric 2 *°, we
calculated regional fractional amplitude of low-frequency fluctuation (FALFF) *! as a measure of
functional integrity.

Furthermore, while our model uses structural connectivity as the network along which inter-
region propagation occurs, we also calculated and used a functional connectome, as the average
of the absolute Pearson correlation matrices across all healthy subjects with fMRI data (N=42).
Based on this, we compared model performance using structural and functional connectivity,
characterizing the choice of connectivity metrics (see Multi-scale interactions involving
neurotransmitter receptors are important to explaining multifactorial brain reorganization and
Supplementary Fig. S8).

ASL acquisition/processing

Resting Arterial Spin Labeling (ASL) data were acquired using the Siemens product PICORE
sequence for N=195 subjects. Acquisition parameters were: TR/TE=3400/12 ms,
TI1/T12=700/1900 ms, FOV=256 mm, 24 sequential 4 mm thick slices with a 25% gap between
the adjacent slices, partial Fourier factor=6/8, bandwidth=2368 Hz/pix, and imaging
matrix=64x64. For preprocessing details see "UCSF ASL Perfusion Processing Methods” in
adni.loni.usc.edu. In summary, main preprocessing steps included: 1) motion correction, 2)
perfusion-weighted images (PWI) computation, 3) intensity scaling, 4) CBF images calculation,

Page 5 of 39


http://adni.loni.usc.edu/
http://adni.loni.usc.edu/

5) alignment to the structural T1 image, and 6) spatial normalization to MNI space * using the
registration parameters obtained for the structural T1 image with the nearest acquisition date, and
6) mean CBF calculation for each considered brain region.

Amyloid-3 PET acquisition/processing
A 370 MBq (10 mCi + 10%) bolus injection of AV-45 was administered to each participant

(N=422), and 20 min continuous brain PET imaging scans were acquired approximately 50 min
post-injection. The images were reconstructed immediately after the 20 min scan, and when
motion artifact was detected, another 20 min continuous scan was acquired. For each individual
PET acquisition, images were initially preprocessed according to four main steps 2°: 1) dynamic
co-registration (separate frames were co-registered to one another lessening the effects of patient
motion), 2) across time averaging, 3) re-sampling and reorientation from native space to a
standard voxel image grid space (“AC-PC” space), 4) spatial filtering to produce images of a
uniform isotropic resolution of 8 mm FWHM, and 5) affine registration to the participant’s
structural T1 image. Next, using the registration parameters obtained for the structural T1 image
with the nearest acquisition date, all amyloid images were spatially normalized to the MNI space
24 Considering the cerebellum as an AR non-specific binding reference, SUVR values for the
regions were calculated.

Tau PET acquisition/processing

A 370 MBg/kg bolus injection of tau specific ligand 18F-AV-1451 ([F- 18] T807) was
administered to each participant (N=238), and 30 min (6 x 5 min frames) brain PET imaging
scans were acquired starting at 75 min post-injection (N = 200). Images were preprocessed
according to four main steps “°: 1) dynamic co-registration (separate frames were co-registered to
one another lessening the effects of patient motion), 2) across time averaging, 3) re-sampling and
reorientation from native space to a standard voxel image grid space (“AC-PC” space), 4) spatial
filtering to produce images of a uniform isotropic resolution of 8mm FWHM, and 5) affine
registration to the participant’s structural T1 image. Next, using the registration parameters
obtained for the structural T1 image with the nearest acquisition date, all tau images were
spatially normalized to the MNI space ?*. Considering the cerebellum as a non-specific binding
reference, SUVR values for the grey matter regions considered were calculated.

Receptor densities and brain parcellation

In-vitro quantitative receptor autoradiography was applied to measure the densities of 15
receptors in 44 cytoarchitectonically defined cortical areas spread throughout the brain *. These
receptors span major neurotransmitter systems, and show significant regional variability across
the brain. Brains were obtained through the body donor programme of the University of
Dusseldorf. Donors (three male and one female; between 67 and 77 years of age) had no history
of neurological or psychiatric diseases, or long-term drug treatments. Causes of death were non-
neurological in each case. Each hemisphere was sliced into 3 cm slabs, shock frozen at -40C, and
stored at -80C.

Receptors for the neurotransmitters glutamate (AMPA, NMDA, kainate), GABA (GABA,,
GABAA-associated benzodiazepine binding sites, GABAg), acetylcholine (muscarinic Mj, Mg,
M3, nicotinic a4f37), noradrenaline (s, o), serotonin (5-HT1,, 5-HT>), and dopamine (D;) were
labeled according to previously published binding protocols consisting of pre-incubation, main
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incubation and rinsing steps 32. The ligands used are summarized in Supplementary Table S3.
Receptor densities were quantified by densitometric analysis of the ensuing autoradiographs, and
areas were identified by cytoarchitectonic analysis in sections neigbouring those processed for
receptor autoradiography, and which had been used for the visualization of cell bodies **.

A brain parcellation was then defined with the aid of the Anatomy Toolbox ** using 44 regions
of interest for which receptor densities were available 35. This parcellation was based on areas
identified by cortical cytoarchitecture, as well as other cyto- and receptor-architectonically
defined regions with receptor measurements (regions are summarized in Supplementary Table
S4). These 44 regions were mirrored across left and right hemispheres for a total of 88 brain
regions in our parcellation. For each receptor, regional densities were normalized using the mean
and standard deviation across all 88 brain regions.

The structural T1 images of the Jiilich ** and Brodmann * brain parcellations were registered to
the MNI ICBM152 T1 template using FSL 5.0's FLIRT affine registration tool ', and the
obtained transformations were used to project the corresponding parcellations to the MNI
ICBM152 space (using nearest neighbor interpolation to conserve original parcellation values).
In the MNI ICBM152 space, voxels corresponding to the cytoarchitectonically-defined regions
from ** were identified from the regions in the Anatomy Toolbox, with the remaining Brodmann
regions (Supplementary Table S4) filled in using the Brodmann brain atlas. The resulting
parcellation of 88 brain regions in the common template space was then used to extract whole-
brain multi-modal neuroimaging data and estimate the diffusion-based connectivity matrix, as
described in Materials and Methods: Multimodal neuroimaging data and Materials and
Methods: Anatomical connectivity estimation.

Anatomical connectivity estimation

The connectivity matrix was constructed using DSI Studio (http://dsi-studio.labsolver.org). A
group average template was constructed from a total of 1065 subjects . A multishell diffusion
scheme was used, and the b-values were 990, 1985 and 2980 s/mm2. The number of diffusion
sampling directions were 90, 90, and 90, respectively. The in-plane resolution was 1.25 mm. The
slice thickness was 1.25 mm. The diffusion data were reconstructed in the MNI space using g-
space diffeomorphic reconstruction  to obtain the spin distribution function *°. A diffusion
sampling length ratio of 2.5 was used, and the output resolution was 1 mm. The restricted
diffusion was quantified using restricted diffusion imaging **. A deterministic fiber tracking
algorithm ** was used. A seeding region was placed at whole brain. The QA threshold was
0.159581. The angular threshold was randomly selected from 15 degrees to 90 degrees. The step
size was randomly selected from 0.5 voxel to 1.5 voxels. The fiber trajectories were smoothed by
averaging the propagation direction with a percentage of the previous direction. The percentage
was randomly selected from 0% to 95%. Tracks with length shorter than 30 or longer than 300
mm were discarded. A total of 100000 tracts were calculated. A custom brain atlas based on
cytoarchitectonic regions with neurotransmitter receptor data * was used as the brain
parcellation, as described in Materials and Methods: Data description and processing: Receptor
densities and brain parcellation, and the connectivity matrix was calculated by using count of
the connecting tracks.
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Multimodal neuroimaging data

After pre-processing ADNI neuroimaging data for all 6 modalities and extracting it for the
cytoarchitectonically defined atlas described in Materials and Methods: Data description and
processing: Receptor densities and brain parcellation, subjects lacking sufficient longitudinal or
multimodal data were discarded. The disqualification criteria were i) fewer than 4 imaging
modalities with data, or ii) fewer than 3 longitudinal samples for all modalities. For the
remaining subjects, missing neuroimaging modalities at each time point with actual individual
data were imputed using trimmed scores regression with internal PCA *%. Imputation accuracy
was validated using 10-fold cross-validation, showing a strong capacity to recover the real data
(correlation values: rcge = 0.44, lamyloid = 0.60, rneural activity = 0.95, lgray matter = 0.80, I'metabolism =
0.81, r = 0.71; all P<10®). Finally, a total of 423 subjects were left with all 6 neuroimaging
modalities with an average of 4.75 (x2.71) time points. We used the mean and variance of each
neuroimaging modality across all regions and healthy subjects to calculate z-scores of
neuroimaging data across all (healthy, MCI, and AD) subjects. Please see Supplementary Tables
S1-S2 for demographic characteristics, and Materials and Methods: Multimodal neuroimaging
data and Supplementary Fig. S1 for a detailed flowchart of the selection and analysis of the
participants.

Cognitive scores

We used multiple composite scores derived from the ADNI neuropsychological battery.
Protocols for deriving each score are described in the respective ADNI protocols documentation
or relevant publication for executive function 44, memory 44, language “*°, visuospatial
functioning *, mini-mental state examination (MMSE) “, and the Alzheimer’s Disease
Assessment Scale (ADAS11/13) 46. With an average of 7.27 + (2.55) evaluations per subject in
our cohort (N=423), we calculated cognitive decline as the linear best fit rate of change of each
cognitive score with respect to examination date. Thus, for each patient, cognitive decline was
represented by a set of 7 rates of change.

Receptor-Enriched Multifactorial Causal Model (re-MCM)

Under the framework of the multifactorial causal model (MCM) introduced in **, we consider the
brain as a dynamical system of anatomically-connected regions defined by interacting,
neuroimaging-derived biological factors. These biological factors are tissue structure, neuronal
activity, blood flow, metabolism, and the accumulation of misfolded proteins (amyloid, tau),
quantified by structural MRI, functional MRI, ASL MRI, FDG PET, amyloid PET and tau PET,
respectively. Each biological factor m at a particular brain region i is represented by a single
variable S, ;, whose rate of change is a function of i) local states of other factors, and ii) the
propagation of the same factor across anatomically-connected regions. Thus, in our model,
pathological factors can propagate throughout the brain, but any direct interactions between
factors must occur locally within a region.

In this study, for a given subject, and at each of the Nzo, = 88 brain regions, the system is
defined by Np,c = 6 state variables or factors. Each factor S,,; represents the m™ neuroimaging
modality at the i brain region. Factor dynamics can be decomposed into local effects due to
factor-factor interactions and network propagation of the factor. In general, the differential
equation describing this coupled system for a given subject is:
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dsrstl(t) = f(S.:(®) + g(Sm.(t), Cicsx ), @

Local Effects  Inter-region Propagation

where f and g are functions that determine the effects of local multi-modal interactions and
propagation, respectively, and C;.,., is the net connectivity of region i. Here, we extend the basic
MCM formulation (Equation 1) to include the local effects of neurotransmitter receptors. With R
being a Ny X Nro matrix of spatial maps, composed of local densities ; ; of a receptor k at a
region i, and R, ; being a Ny X 1 vector of all receptor densities in region i, we define the
general form of the receptor-enriched MCM (re-MCM) as:

ASpmi(t)
—= = f(S.i(0), Rei) + G (Ss (), Cisr). )

The first term f(S.;(t),R.;) represents the local component, which is the interaction between
the factor m and all other factors in region i, mediated by the local densities of receptors in that
region. The second term g(S,, .(t), C;..) represents the contribution due to network propagation
of the factor m, mediated by the net anatomical connectivity C;.,. of the region i. The functions
f and g in Equation 2 define the global imaging factor dynamics, which are valid for all brain
regions. Thus, regional differences are due to different imaging factor states, receptor
distributions and anatomical connectivity, but the mechanisms of their interactions, represented
by f and g, are consistent across the whole brain.

Given the decades-long temporal scale of neurodegeneration compared to the relatively short few
months between neuroimaging samples, we assume a locally linear, time-invariant dynamical
system:

ds™(t) N 5 N, N
;—t = anai am n,i(t) + Zkrei ak Tk,i + agrrlop ij(l-),ljii[cjﬁism,j(t) - CiﬁjSm,i(t)]' (3)

where C;_,; is the directed anatomical connectivity from region i to j, and Bmi® \was defined by

the local rate of change of neuroimaging data for successive longitudinal samples at times t" and
t:

dSm,i(t) — Sm,i(t)—Sm,i(tr) (4)
dt t—tr )

In this work, we expand the local effect term to include i) direct factor-factor effects, ii)
interaction terms mediated by N, = 15 receptor types, and iii) direct receptor effects (Equation

3) on the neuroimaging factor rate of change mi The local factor effects term n Equation 3 is
now expanded:

N,
an—>m — a(r)l—)m +Z rec n—>m k (5)
Direct Factor-Factor Term Interactlon Term

Although the receptor maps R are constant templates with spatial but no temporal variation, their
interaction terms add a dynamic element, as they imply a regional heterogeneity to neuroimaging
predictors that is not directly explained by the direct receptor term in Equation 3. For instance,
we might notice that (hypothetically) the interaction between a glutamatergic receptor and
functional activity is a significant predictor of gray matter atrophy. Whether or not functional
activity or the glutamatergic receptor map are significant predictors on their own, the
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significance of the interaction term would imply that the spatial distribution template of the
glutamatergic receptor is informative when combined with functional activity.

Additionally, for propagation, we consider only symmetric connectivity C;.,; between regions i

and j, using a template connectivity matrix for all subjects, as described in Anatomical
connectivity estimation, to give the propagation term

Pmi(6) = T35 Gt [Sm j () = S (D) (6)

This reduces the net propagation of a factor m to a region i to a single propagation term. A more
complete treatment may consider vascular connectivity as well ** 4, as this measure may be more
relevant for different processes (such as functional activity, CBF and metabolism, respectively).

ASm,i(t) N N N, 5 N,
=B = VB (@™ + X AR ) Sni(8) + Byl AR T + CropPm,i (£) @)

Formulated in this way, each model contains a set of Nyaams = Niac X (1 + Nyec) + Nige +1 =

113 parameters {a}}* for subject x and factor m (or 678 total parameters per subject). Apart
from the propagation term, which is specific to the imaging modality output of the model, all
predictors are identical for the 6 neuroimaging modalities. That is, a common set of receptor
maps, multi-modal neuroimaging states, and pseudo-personalized receptor-imaging interactions
are used as predictors. However, based on their respective effects on each output modality, we
obtain 678 distinct biological parameters per subject, each with a distinct mechanistic
interpretation (e.g. the effect of neural activity on metabolism or the effect of neural activity on
CBF). We then perform linear regression, using the terms in Equation 7 as predictors with
longitudinal ADNI neuroimaging samples S,, ;(t) and receptor maps R, to estimate subject- and
modality-specific parameters {a}7* for each subject x and modality m. Separate regression
models were built for i) each of the N=423 qualifying subjects, and ii) each of the 6
neuroimaging factors. These subjects were drawn from the ADNI dataset with at least 4 recorded
neuroimaging modalities, and at least 3 longitudinal samples for at least one modality.

To evaluate model fit, we calculate the coefficient of determination (R?) for each subject. This is
_ dsm,i(t)

summarized by modalities in Fig. 2. With the data vector y with elements y,,;, = T and
model predictions § with § = 9, ; +, the coefficient of determination is

. 0 )2
Rz =1- 2it Omit—Im,it) (8)

it (Ym,i,t_<Ym>)2'

where <y, > is the mean of neuroimaging data for a particular modality m across all brain
regions and longitudinal samples.

Statistical analysis
Model fit

Personalized model fit quantified by the coefficient of determination (R%) was evaluated for each
subject and neuroimaging modality. F-tests were used to compare receptor-neuroimaging (113
parameters per modality) and neuroimaging-only (8 parameters per modality) to fitting
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neuroimaging data in each subject (F-test with p<0.05). The model fit (R?) was evaluated for
each subjects’ neuroimaging models using 1000 iterations of randomly permuted receptor maps
(with receptor densities shuffled across regions independently for each receptor type), and we
calculated the p-value of the true receptor data model R* compared to this distribution.

Biological parameters and relationship with cognition

We aimed to further clarify how the cognitive decline observed in AD progression is modulated
by specific neurotransmitter receptor systems and their causal interactions with macroscopic
biological factors (i.e. amyloid, tau, CBF, neural activity, glucose metabolism and gray matter
density). As changes in several receptor densities are difficult to image in-vivo, we analyzed the
receptor terms from our personalized re-MCM approach as a proxy for the importance of each
particular receptor’s distribution or interactions in predicting multi-domain cognitive
deterioration in AD. To consider the inter-subject variability in the diseased population, we used
a combination of cognitive assessment scores as disease severity descriptors (i.e. executive
function, memory, language, visuospatial functioning, MMSE, ADAS 11 and ADAS 13; see
Materials and Methods: Cognitive Scores).

We aimed to robustly identify significant and relevant re-MCM parameters that represent
molecular-neuroimaging interactions associated with cognitive decline, using a data-driven
multivariate cross-correlation analysis in combination with a randomized permutation test to
ensure the statistical stability of our results. By concurrently analyzing the multivariate changes
across all re-MCM parameters, this multidimensional analysis searched for large clusters of
functionally related receptor-neuroimaging interaction mechanisms statistically associated with
AD-associated cognitive changes. In other words, the SVD method used here (and its associated
permutation test) identified the specific set of receptors and/or imaging features that were
maximally related to cognitive decline. To this end, we selected a clinical subgroup of interest
(either N=112 cognitively healthy subjects or N=25 AD patients from the N=423 total subjects
with sufficient multi-modal neuroimaging data), and performed the following procedure on the
original set of 678 re-MCM parameters and 7 rates of cognitive decline per subject (executive
function, memory, language, visuospatial functioning, MMSE, and ADAS11/13):

1. To identify correlated axes of variation, we performed principal component analysis (PCA)
on all 678 biological parameters separately on the healthy and AD subjects, and ranked
parameters based on the variance explained in the first principal component (PC).

2. To relate biological parameters to cognition, we performed singular value decomposition
(SVD) on the cross-covariance matrix between significant parameters and rates of cognitive
decline for AD patients, after adjusting for covariates (baseline age, education and gender).
SVD allows us to simultaneously reduce the dimensionality of the 7 cognitive assessments
and to rank parameters by their variation with cognition. Where X is a matrix of z-scores of
each re-MCM parameter for this clinical subgroup and Y is a matrix of the corresponding z-
scores of the rates of clinical decline, the cross-covariance matrix C = XY’ is decomposed
as

C=Usv’ 9)

where U and V are orthonormal matrices of spatial loadings for the coefficients and
cognitive scores, respectively, and S is a (diagonal) matrix of singular values {s;, ..., s;}.
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3. To evaluate the significance of SVD components, we performed permutation tests by
shuffling the mapping between subjects’ re-MCM parameters and cognitive scores, and
repeating SVD. To compare permuted iterations, we performed a Procrustes transformation
to align the axes of singular components. We kept only those singular components that are
significant p < 0.05) compared to 1000 permutation iterations of SVD components.

4. We performed 1000 iterations of bootstrapping on the parameters X, and discarded the
parameters with non-significant 95% confidence intervals.

5. For the remaining significant re-MCM parameters and SVD components, we computed the
variance explained per parameter. We then summed the contribution of each significant
parameter j to each significant SVD component i, weighted by the fraction of total variance
explained by the i component

2,param,sig Nsvpsig  Ulj sf
parAMSI — o S 10)
i 2 SUE 3st (
J =) . J°j
Parameter Singular value
contribution contribution

Inter-subject mechanistic variability

To explore the potential clinical utility of our approach at the personalized level, we performed a
quantitative comparison between diseased participants in terms of their inter-subject variability
across different receptor systems. To this end, we defined individual-specific “fingerprints” of
the alterations in receptor-modulated synergistic interactions. Specifically, for each participant i
and receptor system r, we calculated the Mahalanobis distance D; ,.of re-MCM parameters «; ,-
associated with cognitive decline in our AD cohort (Fig. 4; Supplementary Table S5). This
distance is calculated between subject’s parameters «; -, and the distribution of healthy subjects’
parameters for receptor r, with means ;- and a covariate matrix 71,

Diy =+J(air — uir)"S W ay, — tir)- (11)

To quantify the relationship between this summary metric of receptor alterations and specific
cognitive domains, we performed multivariate linear regression on rates of cognitive decline
(adjusted by age, gender, education level and APOE4 status; N=25) using the z-scores of the
Mahalanobis distances for the 6 receptor systems. We also estimated the explanatory importance
of each receptor system, as the percentage improvement in model fit (R%) by including a
particular receptor Mahalanobis distance.

Data and code availability

The three datasets used in this study are available from the ADNI database (neuroimaging and
cognitive evaluations; http://www.adni.loni.usc.edu), the HCP database (tractography template
for connectivity estimation; http://www.humanconnectomeproject.org/), and receptor density
data published in 35. We anticipate that the re-MCM method will be released soon as part of our
available and open-access, user-friendly software 47 (https://www.neuropm-lab.com/neuropm-
box.html).
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Results

Capturing receptor-mediated multifactorial brain reorganization

Here, we aimed to develop a multi-scale generative brain model linking regional receptor
densities (for 15 neurotransmitter receptors) and multimodal neuroimaging-based factors (for six
biological variables) in a flexible, unified formulation. We aimed to use this mathematical
framework to infer receptor alterations associated with the long-term physiological changes of
complex brain reorganization processes (namely aging and neurodegeneration) and their
cognitive impact. Because changes in receptor concentrations are difficult to measure in vivo, our
receptor density maps were composed of group-averaged templates, with spatial distributions of
receptors but no inter-individual variability or intra-individual longitudinal progression.
Consequently, we use the predictive importance of receptor distributions in generative models of
abnormal neuroimaging-derived biological variables as a proxy for alterations in either receptor
density or mechanistic interactions with other imaging-derived variables.

We proceeded to characterize the multifactorial brain dynamics of each participant using the
developed neurotransmitter receptor-enriched multifactorial causal model (re-MCM,; Fig. 1) and
the quality-controlled, multi-modal longitudinal neuroimaging data (described in Materials and
Methods: Data description and processing). For each participant with sufficient longitudinal and
multi-modal data (N=423), the re-MCM was fit for all 6 neuroimaging modalities, to obtain
receptor-imaging biological parameters reflecting local factor-factor interactions mediated by
neurotransmitter receptor distributions (e.g. amyloid-tau interactions modulated by NMDA
receptors) and the spreading of effects via anatomical networks (e.g. amyloid and tau
propagation along white matter connections).
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a) Individual-level longitudinal multi-modal neuroimaging modeling
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Figure 1: Neurotransmitter receptor-enriched multifactorial causal modeling. a) For each
subject with longitudinal neuroimaging data, changes between subsequent samples in each
neuroimaging modality are decomposed into local synergistic effects due to i) the direct
influence of all neuroimaging-quantified biological factors, ii) receptor density distributions, and
i) multi-scale receptor-imaging interactions, and iv) global network-mediated intra-brain
propagation. Combining this data across (Nro;=88) brain regions and multiple neuroimaging
samples results in a multivariate regression problem to identify the subject-specific parameters
{a}. b) At a group level, these personalized model parameters are then compared to subjects’
cognitive assessments (specifically, the rates of decline for 7 composite cognitive scores
described in Materials and Methods: Cognitive scores) using a singular value decomposition
(SVD) procedure on the cross-covariance matrix, to identify multi-scale receptor-neuroimaging
interactions that are robustly correlated with the severity of cognitive symptoms in AD (outlined
in Materials and Methods: Biological parameters and relationship with cognition). c) In the
context of personalized applications, inter-subject variability in receptor-imaging interactions can
be used as clinical “fingerprints” of molecular alterations representing different disease
mechanisms. Patients can then receive individually-tailored treatment plans to address their
underlying etiology, based on their specific fingerprints. For example, patients with greater
vascular alterations may benefit more from lifestyle interventions such as physical exercise,
whereas patients with greater receptor alterations may require neurotransmitter-based medication
(depending on the most affected receptor). Furthermore, treatment plans can be continually
adjusted with follow-up visits.

Multi-scale interactions involving neurotransmitter receptors are important to
explaining multifactorial brain reorganization

Firstly, we proceeded to evaluate the ability of the re-MCM approach to fit longitudinal
neuroimaging data with and without receptor maps and multi-scale receptors-imaging
interactions (Fig. 2a-b). For each of the six neuroimaging modalities per subject, we calculated
the coefficient of determination (R?) as a measure of model accuracy for explaining the real
imaging-specific longitudinal changes. While model accuracy varied by imaging modality, we
observed that the personalized models including receptor-neuroimaging interactions explained
approximately 70% (£ 20%) of observed variance in all modalities (Fig. 2a).

Inter-region propagation in our model occurs along structural connectivity. While functional
connectivity can be a better predictor of fMRI data, structural connectivity is a better measure of
the actual physical substrate connecting brain regions. Nevertheless, to explore the effects of
alternate connectivity measures, we repeated our modeling steps using functional connectivity in
place of the structural connectivity derived from diffusion-MRI tractography. While the
connectivity matrices differed, we found almost no change in model fit or parameters across
subjects, with a high correlation r>0.99 of model R?® (P<0.001) across all modalities
(Supplementary Fig. S8). We attribute this to the dominance of intra-regional effects in our
model, with many interacting local receptor and neuroimaging predictors, and also to the shared
information in structural and functional connectivity *.

Next, to evaluate the relevance of receptor densities and receptor-mediated interactions between
biological factors quantified by imaging (e.g. amyloid-tau interaction modulated by GABA), we
compared the model fit of full re-MCM models (incorporating receptor-factor interactions as
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previously described) with restricted models (using only neuroimaging predictors and network
propagation). The models including receptor maps and receptor-imaging interactions explained,
on average, more than twice as much of the variance in longitudinal neuroimaging changes
(Supplementary Table S7; P<0.001 with a two-sample t-test). To account for the greater
explanatory power of a larger model with more parameters, we quantified the improvement in
individual neuroimaging modeling due to the receptor terms, we conducted F-tests between the
full re-MCM formulation (Fig. 2a) and the restricted model (Fig. 2b). As hypothesized, we
observed that the inclusion of receptor maps and multi-scale (receptor-imaging) interaction terms
significantly improved (P<0.05) the model accuracy for 86.8%-99.0% of the subjects (Fig. 2c)
while accounting for the additional degrees of freedom in the model with receptors. While the
inclusion of receptors and receptor-imaging interactions improved model performance for all
subjects and modalities, this improvement was not always significant, most notably in 13.2% of
gray matter atrophy models (Fig. 2c). We attribute this to the use of a shared, group-averaged set
of neurotransmitter receptors templates (further tested below).

Having established that receptor maps and receptor-neuroimaging interactions do significantly
improve personalized neuroimaging models, we then performed a permutation analysis on the
receptor maps to test the informativeness compared model performance using averaged receptor
templates to a set of null receptor maps. For each subject, the model fitting procedure was
repeated using 1000 random permutations of the spatial receptor maps. Receptor densities were
shuffled across regions of interest, independently for each receptor. We then compared the
distribution of model fit (R?) using these randomly permuted data with the R? obtained for the
models using the true receptor templates. We observed that the significance of the improvement
in model fitting over randomized receptor maps varied by imaging modality, for example, being
lower for metabolism than for neural activity (Fig. 2d). Nevertheless, the true receptor templates
perform significantly better in approximately 80%-98% of all subjects, depending on the
modality. The gain in model performance by imaging modality is presented in Supplementary
Table S8, and generally fell between 15.6% + 13.3% (p<0.0417) for glucose metabolism to
22.3% + 15.0% (p<0.003) for neural activity. Notably, the modalities for which true receptor
data was the least informative (metabolism and gray matter atrophy), were also the ones for
which augmenting the model with receptor data provided the least significant improvements
across all subjects. Furthermore, we compared the proportion of subjects with significant
improvements over null maps across diagnoses, shown in Supplementary Fig. S7. On average
across modalities, 96.2% of healthy subjects’ models were significantly improved, wheras this
was progressively lower for MCI subjects (89.4% for early MCI and 89.8% for late MCI) and
AD patients (78.3%).

We hypothesize that accentuated aging processes and neurodegeneration may alter receptor
densities or interaction mechanisms in each individual, requiring the biological parameters in our
personalized models to compensate. Identifying these specific alterations is the subject of the
remaining subsections.
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a) Data variance explained by receptor-imaging interaction model b) Data variance explained by neurcimaging-only model
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Figure 2: Receptor density templates and multi-scale receptor-neuroimaging interactions
significantly improve individual longitudinal neuroimaging models. The improvement in
neuroimaging modeling was evaluated in terms of i) including direct receptor terms and
receptor-neuroimaging interactions in the model, and ii) using true receptor density maps
compared to randomized, spatially permuted maps. The histograms in (a) and (b) show the
distribution of the coefficient of determination (R%) of N=423 individual models of neuroimaging
changes including (a) and excluding (b) receptor predictors. Subject-specific linear models fit
neuroimaging changes reasonably well, with a significant improvement by including receptor
terms. This is confirmed by the F-test between subject models with and without receptor
densities and receptor-imaging interactions (113 and 8 parameters, respectively). The proportion
of subjects for whom the F-statistic is above the critical threshold is shown in (c). This critical
threshold corresponds to a statistically significant (P<0.05) improvement due to the receptor
terms in the re-MCM model, accounting for the increase in adjustable model parameters.
Furthermore, to validate the benefit of the receptor templates over randomized null maps, re-
MCM models were fit with 1000 spatially-shuffled receptor maps for each subject. The p-value
of the model fit (R?) using true receptor templates compared to the distribution of R? of models
using randomized templates was calculated for each subject. The proportion of subjects for
whom the true receptor maps resulted in a statistically significant improvement in model fit
(P<0.05) is shown in (d). The results of these two analyses in (c) and (d) validate the use of
averaged receptor templates in personalized neuroimaging models.
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Characterizing receptor-imaging interaction variability in healthy aging and AD

We aimed to characterize the variability in receptor-mediated brain reorganization in the studied
healthy aging (N=112) and AD subpopulations (N=25). In the healthy population, we performed
a principal component analysis (PCA) on all re-MCM biological parameters (678 in total) across
the 6 neuroimaging modalities, finding that the first principal component (PC1) is able to explain
97.3% of the group’s variance. The most variable parameters contributing to PC1 belonged to
CBF and gray matter models (Fig. 3a). That is, if current CBF in a region becomes less important
(relative to other re-MCM predictors) to predicting its future change, gray matter density also
becomes less important to predicting future atrophy, whereas the current level of amyloid
becomes more important to predicting future accumulation. These results suggest that, in the
absence of an influential disease process (e.g. neurodegeneration), inter-individual differences in
the long-term brain reorganization are mechanistically driven by receptor-mediated processes
affecting CBF and gray matter density. Most prominently, these include the CBF effects due to
interactions between the dopaminergic D; receptor and amyloid distribution (2.9%), the
adrenergic oy receptor and gray matter density (2.7%), the GABAA benzodiazepine site and
neural activity (GABAA/BZ; 2.0%), and the GABAA receptor and gray matter density (1.8%).
Additionally, the interaction between the glutamatergic AMPA receptor and amyloid distribution
as a predictor of gray matter atrophy (2.3%) are also notably variable.

In the AD group (N=25), with the presence of a neurodegenerative condition, the first PC of the
re-MCM biological parameters only explained 26.2% of the population variability (with
subsequent PCs explaining less than 10% each). Along this main axis of variability, inter-
individual differences are primarily due the effects of neural activity as a direct or receptor-
mediated predictor of tau accumulation (Fig. 3b; 7.9% of PC1 via the direct term, 7.3% via
adrenergic ajreceptors, 5.7% via serotonergic 5HTia receptors, 4.0% via dopaminergic D
receptors, and 3.7% via cholinergic a4p, receptors). The next subsection covers a deeper analysis
of the AD group.

Interestingly, in the healthy subpopulation, when the individually small contributions of all
receptor-terms for each target neuroimaging modality were summed (Fig 3c), we observed that
the receptor mechanisms that affect CBF changes, gray matter atrophy and amyloid
accumulation were the most variable, with GABAergic and serotonergic mechanisms
dominating. For example, combined variability due to GABAergic (9.7% of PC1), serotonergic
(8.7% of PC1) and adrenergic (primarily a4 receptors; 7.3% of PC1) interactions predicting CBF
changes accounted for approximately a quarter of variability across all 6 neuroimaging
modalities and 678 total parameters (25.7% of PC1). As seen in Fig 3b, the main sources of
biological parameter variability in AD (Fig 3d) involved neural activity predictors of tau
accumulation. Predictors of tau accumulation involving adrenergic (9.9% of PC1), serotonergic
(9.6%), cholinergic (6.6%) and dopaminergic (4.7%) interactions were the most variable.
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a) Most variable parameters in healthy subjects b) Most variable parameters in AD subjects
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c) Total variability of factor-factor and receptor-factor interactions in healthy subjects
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d) Total variability of factor-factor and receptor-factor interactions in AD subjects
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Figure 3: Variability of biological parameters across healthy and AD subjects. a-b) PCA-
based sources of variability in the 678 re-MCM parameters across healthy subjects (N=112) and
AD patients (N=25), respectively. The first principal component (PC1) captured 97.3% of the
variance across parameters in healthy subjects, and 26.2% in AD patients. The top 10 biological
parameters and their contributions to PC1 are plotted (with their target neuroimaging models in
the legend), highlighting the receptor-imaging interactions that characterize the main axis of
variability in each clinical subgroup. In healthy subjects, a multi-factorial combination of
receptor-imaging interactions affecting atrophy and CBF changes were the most variable
parameters along PC1. Notably, for AD patients, the top parameters were direct or receptor-
mediated effects of neural activity on various (but especially tau) imaging models. c-d) To
evaluate the relative importance of receptor- and factor-factor interactions, we then aggregated
the importance of all direct or interaction terms involving a given predictor class (factor or
receptor type) along PC1, for healthy subjects (c) and (d) for AD patients, respectively. Note that
the percentage variation across all parameters is shown. As such, there is an overlap in terms
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between the two heat maps (receptor-factor interaction terms contribute to both), and they should
be interpreted separately.

Receptor-imaging alterations underlying cognitive deterioration in AD

To determine the receptor-neuroimaging alterations underlying multiple cognitive variations in
AD, we performed a multivariate cross-correlation analysis between the rate of changes of the
selected cognitive descriptors and the biological parameters across all AD subjects (Materials
and Methods: Biological parameters and relationship with cognition). Notably, we found that
just the first component of the identified biological parameters can explain up to 39.7%
(P<0.004, FWE-corrected) of the inter-individual variability in AD cognitive deterioration (Figs.
4a). Furthermore, we identified the specific cognitive domains that are correlated with receptor-
neuroimaging alterations (Fig. 4c), with executive dysfunction being the most salient cognitive
feature with respect to receptor-neuroimaging parameters. Finally, Fig. 4d presents a detailed
pathway of 95 receptor-imaging interactions significantly associated with cognitive decline
based on feature bootstrapping, and their associated neuroimaging modalities mediating AD-
related symptom severity. These results show that a multi-factorial set of molecular alterations
are relevant to cognitive decline in AD. Cumulative effects of different neuroimaging
interactions and receptor subtypes from the same family are summarized in Fig. 5, quantified by
the total cognitive variance explained by all parameters of the relevant category via the
significant SVD component.

Gray matter density (2.1%) and CBF (1.5%) changes as predictors of neural activity dysfunction,
and CBF (1.3%) and glucose metabolism (1.0%) as predictors of tau distribution were the most
cognitively-significant pathways between imaging modalities, although tau as a predictor of
amyloid distribution (0.7%), neural activity dysfunction (0.7%) and glucose metabolism (1.2%)
was also significant. Overall, as predictors, biological parameters involving CBF, tau and gray
matter density were the most significant in relation to the cognitive severity of AD. The
neuroimaging models of neural activity dysfunction and tau accumulation were the major
sources of cognitively-significant biological parameters.

In terms of receptor systems, glutamatergic, GABAergic and cholinergic alterations were
significant to cognitive decline, as summarized in Supplementary Table S6. Alterations to
glutamatergic predictors of resting state functional activity (2.5%), GABAergic predictors of
amyloid deposition (1.4%), and cholinergic predictors of tau distribution (1.4%) were the
dominant receptor effects.

Furthermore, while the second component was borderline non-significant (p<0.051), it explained
23.4% of the variance between model parameters and cognitive decline (r=0.89, p<10;
Supplementary Fig. S10). In this axis, receptor-imaging parameters predicting neural activity
were less prominent, with CBF and metabolism model parameters contributing more.
Cognitively, this second component corresponded to non-executive function domains, primarily
memory, language and visuospatial function.

As a control case, we performed an equivalent cross-correlation analysis in the healthy
population, notably finding the first principal component relating re-MCM parameter with rates
of cognitive decline in health to be non-significant (Supplementary Fig. S3), although the second
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principal component explaining a small amount of cognitive variance was significant (15.5%
variance explained, p<0.02; Supplementary Fig. S4). Furthermore, we found no significant
component in amyloid-negative healthy subjects (p>0.2 for all components). We attribute this
effect to the lack of consistent cognitive decline in the analyzed healthy population, in contrast to
the large variability observed for AD.

To test the sensitivity of our findings to genetic covariates, we repeated our analyses both with
and without APOE ¢4 allele status and a polygenic hazard score (PHS) 49 as covariates in the
SVD analysis, in addition to age, gender and education in both cases. To overcome the low
number of AD subjects, we expanded our criteria to include MCI and AD subjects (N=177 for
APOE status, N=161 for PHS). Importantly, we confirmed that the previously identified AD-
related significant latent variables and parameters are robust to the inclusion of APOE status and
PHS (Supplementary Fig. S5 and S6). Finally, to further restrict our analysis to subjects on the
amyloid-mediated AD spectrum, we repeated the SVD analysis in amyloid positive subjects with
MCI and AD (N=52). As was the case in the initial AD group, we found one significant principal
component (44.3% variance explained, p<0.003) with a high correlation between model
parameters and cognitive decline (mainly executive function; r=0.76,p<0.001). The main
receptor-imaging interactions along this axis were analogous to those in the AD group, namely
cholinergic predictors of tau accumulation, although parameters of the neural activity model
were less prominent in favour of predictors of metabolism (particularly for adrenergic and
cholinergic systems; see Supplementary Fig. S9).
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Figure 4: Significant neurotransmitter receptor-imaging interactions underlying AD
clinical severity. a) The latent cross-correlation components are ranked by the fraction of
cognitive decline variance explained by re-MCM biological parameters (along with the reported
p-values based on the permutation analysis; see Biological parameters and relationship with
cognition). In this case, only a single latent component was significant (39.7% variance
explained, p<0.004, FWE-corrected). b) A notable correlation (r=0.80; P<10®) between the
projections of statistically stable re-MCM parameters and rates of cognitive decline in the
principal component space was observed, with the removal of an outlier subject more than 3
median absolute deviations from the median. c) Saliences of cognitive decline to this first latent
component, providing a relative ranking of cognitive domains. These saliences are proportional
to the contribution of each term relative to every other term, for example showing that executive
dysfunction is most correlated with alterations to receptor-imaging interactions in AD. d)

Page 22 of 39



Receptor-imaging pathways that are significantly correlated with cognitive decline, arranged by
neuroimaging model and receptor type (Supplementary Table S5). The angle of each sector is
proportional to the contribution of the corresponding parameter to explaining the variance in the
rates of cognitive decline. The inner sectors represent the 6 neuroimaging modalities that
together comprise each personalized re-MCM model. Within each modality, the intermediate
sectors represent the neurotransmitter system involved, while the outer sector consists of the
specific two-way receptor-neuroimaging interactions or direct predictor terms in the model.
Notably, while receptors appear only as predictors in the outer sector, neuroimaging modalities
appear both as predictors and as model outputs in the inner sectors. Thus, the relative importance
of each neuroimaging modality to explaining cognitive differences is not fully represented by the
angle of each inner sector.
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Figure 5: Contributions of mechanistic pathways to the severity of cognitive decline in AD.
To better visualize the importance of neuroimaging factors and neurotransmitter receptor
systems, heatmaps of the cumulative cognitive variance explained by each predictor category in
each neuroimaging model are shown. These variances are the percentages of total cognitive
variance that are explained by significant biological parameters of each category via the first
significant SVD component. As such, the rows of the heatmap on the left replicate the inner
sector of Fig. 4d, while the columns show the importance of each imaging modality or receptor
family as predictors, with CBF and tau predictors explaining the most variance in cognitive
decline.

Clinically-similar subjects have different underlying receptor alterations

Finally, for each participant and receptor family, we defined a summary metric quantifying how
much receptor-based mechanisms differ from clinically healthy subjects (see Statistical analysis:
Inter-subject mechanistic variability). For example, a given subject’s glutamatergic Mahalanobis
distance is a combined measure of the “unhealthiness” of receptor-based interactions and spatial
distributions involving NMDA, AMPA and kainate, while accounting for the variation of these
mechanisms in healthy subjects.

Although a simplified summary metric, the receptor Mahalanobis distances explained a large
proportion of cognitive variance in the AD population, with 71.4% for executive function
(p<0.0004), 43.3% for memory (p<0.08), 18.7% for language (p<0.66), 40.1% for visuospatial
function (p<0.10), 43.8% for MMSE (p<0.08) and 33.8% for ADAS11 (p<0.22). Figure 6a
shows the effects of each receptor family on cognitive domains, as well as the percentage
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improvement in explaining cognitive variance due to each receptor family. We note the large
negative effects of GABAergic alterations on executive function and the MMSE, and
dopaminergic alterations on memory. Interestingly, cholinergic alterations showed a moderate
positive effect and explanatory importance towards executive function.

In Figure 6b-c, we illustrate how two AD patients with similar cognitive symptoms present
distinct receptor alteration fingerprints, with primarily glutamatergic and cholinergic
mechanisms respectively. Importantly, this result suggests that even subjects with identical
clinical diagnoses present distinctive underlying spatiotemporal molecular alterations, and
supports the use of whole-brain generative models to uncover patient-specific receptor and
potential disease mechanisms to target clinically.

a) Improvement in prediction of cognitive decline in AD due to each receptor family
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Figure 6: Receptor alterations underlying inter-individual disease heterogeneity. a) In AD
patients (N=25), we quantified the relative effect sizes of standardized Mahalanobis distances of
receptor mechanisms on different cognitive domains. We also standardized the regression
coefficients within each cognitive domain before visualizing to facilitate comparison across
cognitive domains, and the percentage improvement in model fit (R?) due to each receptor
system is also shown. For example, the explanation of inter-subject variability in executive
function decline by glutamatergic, cholinergic, adrenergic, serotonergic and dopaminergic
Mahalanobis distances is improved by 120% (i.e. more than doubled) by the inclusion of
GABAergic Mahalanobis distance as well. b-c) We show two AD subjects, with similar
symptoms across a variety of cognitive domains. For these subjects, we calculated the
Mahalanobis distance to the distribution of all healthy subjects (N=112), along mechanisms
involving each receptor family. The subjects show distinct receptor alterations based on their
longitudinal neuroimaging changes, despite their shared designation as AD patients and similar
cognitive profiles.

Discussion

In this work, we have presented a personalized, whole-brain and generative multi-modal
neuroimaging model incorporating receptor-neuroimaging interactions using in-vivo data.
Subsequent analyses on the resulting models have allowed, for the first time, the identification of
1) variability in receptor-neuroimaging interactions in healthy subjects and AD patients, and ii)
specific pathways of receptor-neuroimaging interactions that are important to cognitive decline
in AD patients. This exploratory analysis provides a bridge between molecular-level mechanisms
and observable macroscopic neuroimaging biomarkers of healthy aging and AD, revealing which
neurotransmitter receptor systems mediate dysfunctional interactions between neurobiological
processes such as cerebral blood flow, amyloid and tau deposition, gray matter atrophy, neural
activity and metabolism.

Due to the difficulty of comprehensive, personalized in vivo receptor imaging for a large cohort,
receptor maps were not specific to each subject, but instead the averaged templates of 4 post-
mortem brain samples. Post-mortem in vitro autoradiography allowed the imaging of a large
number of receptor types, even those without in vivo radioligands. Firstly, our work demonstrates
that 1) multi-scale interaction terms involving the spatial distributions of neurotransmitter
receptors are highly informative to models of neuroimaging progression, and ii) even group-
averaged receptor map templates can significantly improve the personalized model fit in nearly
all subjects when combined with personalized neuroimaging predictors. Specifically,
incorporating receptor maps and multi-scale receptor-imaging interactions to personalized
models with multi-modal neuroimaging predictors improves the average data variance explained
from approximately 40% to 70% (Fig. 2a,b). This improvement is statistically significant (F-test
with P<0.05) in almost all subjects (Fig. 2c), even after accounting for the additional predictive
power of the larger, multi-scale models. Including only receptor maps without receptor-imaging
interactions also resulted in a more modest yet significant improvement in the vast majority of
subjects across all imaging modalities (Supplementary Fig. S2). This is a particularly strong
result, validating the use of a group-averaged receptor template, given the large improvement
and the stringent criterion accounting for additional model parameters.
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Additionally, models using the true receptor templates perform significantly better (P<0.05 of
R?) than models using randomly permuted, null receptor maps in almost all subjects (Fig 2d;
80.4%-98.1%, depending on the modality), although this improvement was less evident with
disease progression (Supplementary Fig. S7). These results, along with the consistency of
regional receptor densities across the 4 (aged but healthy) brains used to produce the templates
compared to inter-region variability *°, support the applicability of receptor templates to a wider
population. Receptor mapping studies across more diverse clinical groups of patients would help
validate or augment our modeling approach. Nevertheless, given the difficulty of acquiring a
wide variety of in-vivo molecular data, due to a limited number of appropriate radioligands, and
the high cost of longitudinal molecular imaging, these results on model accuracy are a promising
validation for the combination of other molecular templates (such as gene expression atlases)
with personalized neuroimaging predictors. These “pseudo-personalized” molecular-imaging
predictors can then be incorportated into neuroimaging models and used to infer mechanistic
alterations in a group of subjects. If these personalized models are sufficiently accurate, as in this
work, the weights of their biological parameters then serve as proxies for individual-specific
alterations to receptor-mediated mechanisms.

While interpreting these parameters, it is important to distinguish between the types of biological
mechanisms they represent, which include (for each neuroimaging model) i) direct neuroimaging
effects, ii) direct receptor density effects, iii) receptor-imaging interactions, iv) network
propagation and v) offset terms representing an intrinsic rate of change for the neuroimaging
modality. We hypothesize that ageing and neurodegeneration alter the spatial distributions of and
functional interactions involving neurotransmitter receptors, which would lead to subject-specific
model parameters to compensate in the absence of inter-subject variability in receptor data. Thus,
model parameters are a proxy for alterations to spatial maps of receptors or their interactions
with neurobiological processes (represented by direct model receptor density terms and receptor-
imaging interaction terms in the model, respectively). In our parameter analyses in Receptor-
imaging alterations underlying cognitive deterioration in AD, direct receptor density terms
represent alterations to the spatial distribution of a particular receptor. Each interaction biological
parameter value can be interpreted as the effect of the corresponding receptor or imaging factor
on the brain reorganization process, as measured by neuroimaging changes, given “normal” (i.e.
spatial mean) values of all related predictors involving the same receptor or imaging term,
respectively. For example, we consider the case where the interaction term between a
glutamatergic receptor and amyloid in the CBF model is significantly related to cognitive
decline. This implies that, under normal levels of amyloid and the glutamatergic receptor
individually, a functional alteration in this mechanism (quantified by the re-MCM parameter
weight) is correlated with faster cognitive deterioration.

Biological parameters were evaluated for principal axes of variability in Fig. 3 and the
cognitively-relevant variability in Fig. 4. The former method was used to identify linear
combinations of biological parameters that accounted for inter-individual differences in receptor
and/or neuroimaging interaction strengths in healthy and AD subjects. On the other hand, the
goal of the latter analysis was to identify biological parameters that were robustly correlated with
multivariate measures of cognitive decline in AD. The purpose of these analyses was not to
compare effects sizes between predictors, but rather to explore inter-subject differences in
receptor-imaging interactions in relation to cognitive decline. For example, if regional amyloid
accumulation strongly predicts changes in functional activity, but this biological parameter is
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consistent across subjects with different clinical and cognitive states, it would not be significant
to our analysis. Rather than using clinical diagnosis, which is subject to large variability due to
patient presentation and clinician bias, we used a combination of cognitive test scores.
Ultimately, cognitive performance is the phenotype of interest in neurodegeneration. Our SVD
analysis allows us to identify parameters associated with cognitive scores, rather than simply
those with a large variability between individuals due to other causes.

Sources of variability in healthy and AD subjects (Fig. 3) reflect alterations to mechanisms of
receptor-imaging interaction that predict the same or another imaging modality. Here, we
observed that a single PCA component explains 97.3% of the inter-individual variability in
healthy subjects. Along this axis, a multi-faceted combination of receptor-imaging interaction
predictors of CBF alterations (e.g. the interaction between dopaminergic D; receptors and
amyloid) and gray matter atrophy (e.g. the interaction between glutamatergic AMPA receptors
and amyloid) account for the majority of variability (Fig. 3a,c). Interestingly, there is relatively
low variability in the biological parameters of receptor influence on neural activity, glucose
metabolism and tau distribution in healthy individuals (Fig. 3c). In healthy subjects, the receptor-
imaging mechanisms affecting these factors are comparatively consistent, whereas the
mechanisms behind atrophy, CBF regulation and amyloid accumulation display more inter-
subject heterogeneity.

In contrast, the first principal component of AD subjects’ biological parameters explained only
26.2% of the total variance, but this was dominated by neural activity as a (receptor-modulated)
predictor of tau accumulation (as well as other neuroimaging modalities; Fig. 3b,d). Receptor
mechanism variability was largely explained by adrenergic and serotonergic predictors, for
example the interactions of a; and 5HT;a receptors with neural activity to predict tau
accumulation. As tau is primarily present in axonal microtubules, the exacerbation of tau
pathology has been linked to enhanced neural activity *°. Conversely, tau is also believed to
suppress and silence neural activity 2. Thus, the principal component of variability in AD
subjects may represent variability in an activity-dependent tau accumulation via adrenergic oy,
serotonergic 5HT;a dopaminergic D1, and cholinergic a4, receptors. This would be con