000897114 001__ 897114
000897114 005__ 20220131124546.0
000897114 037__ $$aFZJ-2021-03612
000897114 1001_ $$0P:(DE-Juel1)176326$$aThoma, Henrik$$b0$$eCorresponding author$$ufzj
000897114 1112_ $$a50th IFF Spring School "Scattering! Soft, Functional and Quantum Materials"$$cForschungszentrum Jülich$$d2019-03-11 - 2019-03-22$$wGermany
000897114 245__ $$aSingle and Double Polarized Neutron Diffraction Options of POLI at MLZ
000897114 260__ $$c2019
000897114 3367_ $$033$$2EndNote$$aConference Paper
000897114 3367_ $$2BibTeX$$aINPROCEEDINGS
000897114 3367_ $$2DRIVER$$aconferenceObject
000897114 3367_ $$2ORCID$$aCONFERENCE_POSTER
000897114 3367_ $$2DataCite$$aOutput Types/Conference Poster
000897114 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1632487593_769$$xAfter Call
000897114 520__ $$aPolarized neutron diffraction (PND) is a powerful method to investigate magnetic structures. It gives access to unique information, which cannot be determined by non-polarized neutron diffraction or with x-rays. Thus, it is a valuable tool to untangle complex (e.g. chiral) magnetic structures. Three different PND methods are implemented at the hot neutron single crystal diffractometer POLI [1] at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The first technique, the so called flipping ratio (FR) method, uses a single ³He spin filter cell (SFC) [2] to polarize the incoming neutron beam. With a Mezei type double-coil spin flipper between the polarizer and the high Tc superconducting magnet at the sample position providing fields up to 2.2 T, the ratio between the scattered intensity with and without activated spin flipper is build. All components of the setup were optimized for short-wavelength neutrons and its performance successfully tested [3]. Due to lifting counter mechanics, out of plane Bragg reflections can be accessed and a large q-space covered. Thus, this setup is well suited for the high-quality determination of magnetic form factors, to refine the local anisotropy in the magnetic susceptibility tensor at the unit cell level and to reconstruct magnetization density distribution maps.The second technique, the so called uniaxial polarization analysis (PA), is very similar to the FR method, expect the lifting counter is replaced by the Decpol, containing a second ³He SFC for polarization analysis after the scattering process. Although the Bragg reflection access for this setup is limited to the horizontal plane, valuable information about the movement of magnetic domains or the magnetic moment orientation can be collected.The third technique is the so called spherical neutron polarimetry (SNP). Whereas the sample was situated in a strong magnetic field for the previous two PND options, the SNP method provides a zero field at the sample position by using the Cryopad [4]. Thus, the incoming polarization direction and the analysis axis can be chosen arbitrary, giving precise access to information about the phase difference between the nuclear and magnetic structure and the magnetic moment values. This is especially helpful for chiral and non-centrosymmetric structures. Selected examples for each option are provided and show the high performance of the PND setup of POLI.[1] V. Hutanu, Heinz Maier-Leibnitz Zentrum, Journal of large-scale research facilities, 1, A16 (2015)[2] V. Hutanu, M. Meven, S. Masalovich et al., J. Phys.: Conf. Ser., 294, 012012 (2011)[3] H. Thoma, W. Luberstetter, J. Peters, and V. Hutanu, J. Appl. Cryst. 51, 17-26 (2018)[4] V. Hutanu, W. Luberstetter, E. Bourgeat-Lami, et al., Rev. Sci. Instrum. 87, 105108 (2016)
000897114 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000897114 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000897114 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000897114 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000897114 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x1
000897114 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000897114 7001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b1$$ufzj
000897114 7001_ $$0P:(DE-Juel1)130504$$aAngst, Manuel$$b2$$ufzj
000897114 7001_ $$0P:(DE-HGF)0$$aRoth, Georg$$b3
000897114 909CO $$ooai:juser.fz-juelich.de:897114$$pVDB$$pVDB:MLZ
000897114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176326$$aForschungszentrum Jülich$$b0$$kFZJ
000897114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b1$$kFZJ
000897114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130504$$aForschungszentrum Jülich$$b2$$kFZJ
000897114 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000897114 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000897114 9141_ $$y2021
000897114 920__ $$lyes
000897114 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000897114 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000897114 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000897114 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000897114 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x4
000897114 980__ $$aposter
000897114 980__ $$aVDB
000897114 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000897114 980__ $$aI:(DE-82)080009_20140620
000897114 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000897114 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000897114 980__ $$aI:(DE-588b)4597118-3
000897114 980__ $$aUNRESTRICTED