001     897121
005     20211005140832.0
037 _ _ |a FZJ-2021-03619
100 1 _ |a Thoma, Henrik
|0 P:(DE-Juel1)176326
|b 0
|e Corresponding author
|u fzj
111 2 _ |a XXV General Assembly and Congress of the International Union of Crystallography
|g IUCr 2021
|c Prague
|d 2021-08-14 - 2021-08-22
|w Czech Republic
245 _ _ |a Absolute sign of the Dzyaloshinskii-Moriya interaction in weak ferromagnets disclosed by polarized neutron diffraction
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1633349401_3717
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Magnetic interactions are the fundamental components for the fascinating variety of complex magnetic structures and properties found in many functional materials. Identifying, understanding, and finally predicting these interactions is an essential step towards their utilization in novel devices. One of these basic interactions is the Dzyaloshinskii-Moriya interaction (DMI) – an antisymmetric exchange coupling favouring a perpendicular arrangement of magnetic moments, and thus a canting in otherwise collinear structures [1,2]. The DMI, originally introduced in the late 1950s to explain ‘weak ferromagnets’ (not perfectly collinear antiferromagnets), regained the interest in current condensed matter research as it was found to be the driving force to stabilize various novel topological noncollinear magnetic structures, such as spin spirals [3], magnetic skyrmions [4], magnetic soliton lattices [5] and others. In particular for spintronic applications, the DMI shows promising characteristics towards the development of next-generation devices [6]. Although the magnitude of the DMI-induced canting is usually small, the direction can have a fundamental impact on the spin chirality and the resulting magnetic and multiferroic properties [7]. Here, we present polarized neutron diffraction (PND) as an efficient technique for the determination of the absolute direction of the DMI in weak ferromagnetic materials, as recently established by us [8]. We provide the basic formalism for a symmetry analysis of the DMI in crystal structures and show how to relate the measured PND data with the absolute DMI direction. We exemplify this approach in weak ferromagnetic MnCO3 and identify the magnetic moment configurations for a positive or negative sign of the DMI with an applied magnetic field. Using PND [9], we can distinguish even from the measurement of a single suitable Bragg reflection between the two configurations and unambiguously reveal a negative DMI sign in MnCO3. This is in agreement with previous results obtained by resonant magnetic X-ray scattering and thus, validates the method [10]. We demonstrate the generality of our method by providing further examples of topical magnetic materials with different symmetries and support our findings with ab-initio calculations, which reproduce the experimental results. [1] V. E. Dzyaloshinskii, Sov. Phys. - JETP 5(6), 1259 (1957)[2] T. Moriya, Phys. Rev. 120(1), 91 (1960),[3] M. Bode et al., Nature 447, 190 (2007),[4] S. Heinze et al., Nat. Phys. 7, 713 (2011),[5] Y. Togawa et al., Phys. Rev. Lett. 108, 107202 (2012),[6] S. S. P. Parkin et al., Science 320, 190 (2008),[7] J. Cho et al., J. Phys. D: Appl. Phys. 50, 425004 (2017),[8] H. Thoma et al., Phys. Rev. X 11, 011060 (2021),[9] H. Thoma et al., J. Appl. Crystallogr. 51, 17 (2018),[10] V. E. Dmitrienko et al., Nat. Phys. 10, 202 (2014)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 1
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e POLI: Polarized hot neutron diffractometer
|f SR9a
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)POLI-HEIDI-20140101
|5 EXP:(DE-MLZ)POLI-HEIDI-20140101
|6 EXP:(DE-MLZ)SR9a-20140101
|x 0
700 1 _ |a Hutanu, Vladimir
|0 P:(DE-Juel1)164298
|b 1
|u fzj
700 1 _ |a Angst, Manuel
|0 P:(DE-Juel1)130504
|b 2
|u fzj
700 1 _ |a Roth, Georg
|0 P:(DE-HGF)0
|b 3
909 C O |o oai:juser.fz-juelich.de:897121
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164298
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130504
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 4
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21