000897203 001__ 897203
000897203 005__ 20240507205536.0
000897203 0247_ $$2doi$$a10.1016/j.patter.2021.100365
000897203 0247_ $$2Handle$$a2128/31049
000897203 0247_ $$2altmetric$$aaltmetric:114727433
000897203 0247_ $$2pmid$$aWOS:000719722100009
000897203 0247_ $$2WOS$$aWOS:000719722100009
000897203 037__ $$aFZJ-2021-03669
000897203 082__ $$a004
000897203 1001_ $$0P:(DE-Juel1)179250$$aKruse, Johannes$$b0$$eCorresponding author
000897203 245__ $$aRevealing drivers and risks for power grid frequency stability with explainable AI
000897203 260__ $$a[Amsterdam]$$bElsevier$$c2021
000897203 3367_ $$2DRIVER$$aarticle
000897203 3367_ $$2DataCite$$aOutput Types/Journal article
000897203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715083902_7023
000897203 3367_ $$2BibTeX$$aARTICLE
000897203 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897203 3367_ $$00$$2EndNote$$aJournal Article
000897203 520__ $$aStable operation of an electric power system requires strict operational limits for the grid frequency. Fluctuations and external impacts can cause large frequency deviations and increased control efforts. Although these complex interdependencies can be modeled using machine learning algorithms, the black box character of many models limits insights and applicability. In this article, we introduce an explainable machine learning model that accurately predicts frequency stability indicators for three European synchronous areas. Using Shapley additive explanations, we identify key features and risk factors for frequency stability. We show how load and generation ramps determine frequency gradients, and we identify three classes of generation technologies with converse impacts. Control efforts vary strongly depending on the grid and time of day and are driven by ramps as well as electricity prices. Notably, renewable power generation is central only in the British grid, while forecasting errors play a major role in the Nordic grid.
000897203 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000897203 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
000897203 536__ $$0G:(DE-JUEL1)BMBF-03EK3055B$$aCoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)$$cBMBF-03EK3055B$$x2
000897203 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897203 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b1
000897203 7001_ $$0P:(DE-HGF)0$$aSchäfer, Benjamin$$b2
000897203 773__ $$0PERI:(DE-600)3019416-7$$a10.1016/j.patter.2021.100365$$gVol. 2, no. 11, p. 100365 -$$n11$$p100365 -$$tPatterns$$v2$$x2666-3899$$y2021
000897203 8564_ $$uhttps://juser.fz-juelich.de/record/897203/files/Invoice_OAD0000149406.pdf
000897203 8564_ $$uhttps://juser.fz-juelich.de/record/897203/files/1-s2.0-S2666389921002270-main-1.pdf$$yOpenAccess
000897203 8767_ $$8OAD0000149406$$92021-09-27$$d2021-09-30$$eAPC$$jZahlung erfolgt$$zBelegnr.: 1200171702
000897203 909CO $$ooai:juser.fz-juelich.de:897203$$popenCost$$pVDB$$pdnbdelivery$$pdriver$$pOpenAPC$$popen_access$$popenaire
000897203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179250$$aForschungszentrum Jülich$$b0$$kFZJ
000897203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b1$$kFZJ
000897203 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000897203 9141_ $$y2021
000897203 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000897203 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPATTERNS : 2022$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:51:29Z
000897203 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:51:29Z
000897203 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:51:29Z
000897203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPATTERNS : 2022$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000897203 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000897203 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000897203 980__ $$ajournal
000897203 980__ $$aVDB
000897203 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000897203 980__ $$aAPC
000897203 980__ $$aUNRESTRICTED
000897203 9801_ $$aAPC
000897203 9801_ $$aFullTexts