001     897203
005     20240507205536.0
024 7 _ |a 10.1016/j.patter.2021.100365
|2 doi
024 7 _ |a 2128/31049
|2 Handle
024 7 _ |a altmetric:114727433
|2 altmetric
024 7 _ |a WOS:000719722100009
|2 pmid
024 7 _ |a WOS:000719722100009
|2 WOS
037 _ _ |a FZJ-2021-03669
082 _ _ |a 004
100 1 _ |a Kruse, Johannes
|0 P:(DE-Juel1)179250
|b 0
|e Corresponding author
245 _ _ |a Revealing drivers and risks for power grid frequency stability with explainable AI
260 _ _ |a [Amsterdam]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715083902_7023
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stable operation of an electric power system requires strict operational limits for the grid frequency. Fluctuations and external impacts can cause large frequency deviations and increased control efforts. Although these complex interdependencies can be modeled using machine learning algorithms, the black box character of many models limits insights and applicability. In this article, we introduce an explainable machine learning model that accurately predicts frequency stability indicators for three European synchronous areas. Using Shapley additive explanations, we identify key features and risk factors for frequency stability. We show how load and generation ramps determine frequency gradients, and we identify three classes of generation technologies with converse impacts. Control efforts vary strongly depending on the grid and time of day and are driven by ramps as well as electricity prices. Notably, renewable power generation is central only in the British grid, while forecasting errors play a major role in the Nordic grid.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
536 _ _ |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)
|0 G:(DE-JUEL1)BMBF-03EK3055B
|c BMBF-03EK3055B
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 1
700 1 _ |a Schäfer, Benjamin
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.patter.2021.100365
|g Vol. 2, no. 11, p. 100365 -
|0 PERI:(DE-600)3019416-7
|n 11
|p 100365 -
|t Patterns
|v 2
|y 2021
|x 2666-3899
856 4 _ |u https://juser.fz-juelich.de/record/897203/files/Invoice_OAD0000149406.pdf
856 4 _ |u https://juser.fz-juelich.de/record/897203/files/1-s2.0-S2666389921002270-main-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:897203
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179250
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PATTERNS : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PATTERNS : 2022
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21