000897208 001__ 897208
000897208 005__ 20240610120658.0
000897208 0247_ $$2doi$$a10.1088/1674-1137/ac0e89
000897208 0247_ $$2ISSN$$a0254-3052
000897208 0247_ $$2ISSN$$a1674-1137
000897208 0247_ $$2ISSN$$a2058-6132
000897208 0247_ $$2Handle$$a2128/28846
000897208 0247_ $$2altmetric$$aaltmetric:105219618
000897208 0247_ $$2WOS$$aWOS:000692007400001
000897208 037__ $$aFZJ-2021-03674
000897208 082__ $$a530
000897208 1001_ $$0P:(DE-Juel1)131179$$aHaidenbauer, Johann$$b0$$eCorresponding author
000897208 245__ $$aOn the structure in the ΛN cross section at the ΣN threshold
000897208 260__ $$aBristol [u.a.]$$bIOP Publ.$$c2021
000897208 3367_ $$2DRIVER$$aarticle
000897208 3367_ $$2DataCite$$aOutput Types/Journal article
000897208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635238730_32551
000897208 3367_ $$2BibTeX$$aARTICLE
000897208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897208 3367_ $$00$$2EndNote$$aJournal Article
000897208 520__ $$aThe complexity of threshold phenomena is exemplified on a prominent and long-known case - the structure in the $\Lambda p$ cross section (invariant mass spectrum) at the opening of the $\Sigma N$ channel. The mass splitting between the $\Sigma$ baryons together with the angular momentum coupling in the $^3S_1$- $^3D_1$ partial wave imply that, in principle, up to six channels are involved. Utilizing hyperon-nucleon potentials that provide an excellent description of the available low-energy $\Lambda p$ and $\Sigma N$ scattering data, the shape of the resulting $\Lambda p$ cross section is discussed and the poles near the $\Sigma N$ threshold are determined. Evidence for a strangeness $S=-1$ dibaryon is provided, in the form of a (unstable) $\Sigma N$ bound state in the vicinity of the $\Sigma N$ threshold. Predictions for level shifts and widths of $\Sigma^-p$ atomic states are given.
000897208 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000897208 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000897208 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897208 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b1$$ufzj
000897208 773__ $$0PERI:(DE-600)2491278-5$$a10.1088/1674-1137/ac0e89$$gVol. 45, no. 9, p. 094104 -$$n9$$p094104 -$$tChinese physics / C$$v45$$x2058-6132$$y2021
000897208 8564_ $$uhttps://juser.fz-juelich.de/record/897208/files/Haidenbauer_2021_Chinese_Phys._C_45_094104.pdf$$yOpenAccess
000897208 909CO $$ooai:juser.fz-juelich.de:897208$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000897208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131179$$aForschungszentrum Jülich$$b0$$kFZJ
000897208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b1$$kFZJ
000897208 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000897208 9141_ $$y2021
000897208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897208 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHINESE PHYS C : 2019$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000897208 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000897208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000897208 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000897208 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000897208 9801_ $$aFullTexts
000897208 980__ $$ajournal
000897208 980__ $$aVDB
000897208 980__ $$aUNRESTRICTED
000897208 980__ $$aI:(DE-Juel1)IAS-4-20090406
000897208 980__ $$aI:(DE-Juel1)IKP-3-20111104
000897208 981__ $$aI:(DE-Juel1)IAS-4-20090406