000897209 001__ 897209
000897209 005__ 20240625095118.0
000897209 0247_ $$2doi$$a10.1016/j.bpj.2021.09.033
000897209 0247_ $$2ISSN$$a0006-3495
000897209 0247_ $$2ISSN$$a1542-0086
000897209 0247_ $$2Handle$$a2128/29615
000897209 0247_ $$2altmetric$$aaltmetric:94421515
000897209 0247_ $$2pmid$$apmid:34592261
000897209 0247_ $$2WOS$$aWOS:000716322100009
000897209 037__ $$aFZJ-2021-03675
000897209 082__ $$a570
000897209 1001_ $$0P:(DE-Juel1)176760$$aDi Cairano, Loris$$b0$$eCorresponding author
000897209 245__ $$aSubdiffusive-Brownian crossover in membrane proteins: a Generalized Langevin Equation-based approach
000897209 260__ $$aBethesda, Md.$$bSoc.$$c2021
000897209 3367_ $$2DRIVER$$aarticle
000897209 3367_ $$2DataCite$$aOutput Types/Journal article
000897209 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640768881_9265
000897209 3367_ $$2BibTeX$$aARTICLE
000897209 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897209 3367_ $$00$$2EndNote$$aJournal Article
000897209 520__ $$aIn this paper, we propose a Generalized Langevin Equation (GLE)-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (non instantaneous) component modeled respectively through a Dirac delta function and a three-parameter Mittag-Leffler type function. By imposing a specific relationship between the parameters of the three-parameters Mittag-Leffler function, the different dynamical regimes, namely ballistic, subdiffusive and Brownian, as well as the crossover from one regime to another, are retrieved. Within this approach, the transition time from the ballistic to the subdiffusive regime and the spectrum of relaxation times underlying the transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the Mean Squared Displacement (MSD) derived in the framework of this model and the MSD of a protein diffusing in a membrane calculated through molecular dynamics (MD) simulations.
000897209 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000897209 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000897209 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897209 7001_ $$0P:(DE-Juel1)169312$$aStamm, Benjamin$$b1$$eCorresponding author
000897209 7001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b2$$eCorresponding author$$ufzj
000897209 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2021.09.033$$gp. S0006349521007955$$n21$$p4722-4737$$tBiophysical journal$$v120$$x0006-3495$$y2021
000897209 8564_ $$uhttps://juser.fz-juelich.de/record/897209/files/Invoice_BPJ-21323-0.pdf
000897209 8564_ $$uhttps://juser.fz-juelich.de/record/897209/files/Invoice_OAD0000149471.pdf
000897209 8564_ $$uhttps://juser.fz-juelich.de/record/897209/files/1-s2.0-S0006349521007955-main.pdf$$yOpenAccess
000897209 8767_ $$8OAD0000149471$$92021-09-27$$d2021-09-30$$eAPC$$jZahlung erfolgt$$zBelegnr.: 1200171705
000897209 8767_ $$8BPJ213230$$92021-11-30$$d2021-12-01$$ePage charges$$jZahlung angewiesen$$z1320USD
000897209 909CO $$ooai:juser.fz-juelich.de:897209$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000897209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176760$$aForschungszentrum Jülich$$b0$$kFZJ
000897209 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)169312$$aRWTH Aachen$$b1$$kRWTH
000897209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166168$$aForschungszentrum Jülich$$b2$$kFZJ
000897209 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000897209 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000897209 9141_ $$y2021
000897209 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000897209 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897209 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOPHYS J : 2019$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897209 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000897209 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000897209 920__ $$lyes
000897209 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000897209 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000897209 980__ $$ajournal
000897209 980__ $$aVDB
000897209 980__ $$aUNRESTRICTED
000897209 980__ $$aI:(DE-Juel1)IAS-5-20120330
000897209 980__ $$aI:(DE-Juel1)INM-9-20140121
000897209 980__ $$aAPC
000897209 9801_ $$aAPC
000897209 9801_ $$aFullTexts