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ABSTRACT In this work, we propose a generalized Langevin equation-based model to describe the lateral diffusion of a pro-
tein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (noninstantaneous)
component modeled through a Dirac d function and a three-parameter Mittag-Leffler type function, respectively. By imposing a
specific relationship between the parameters of the three-parameter Mittag-Leffler function, the different dynamical regimes—
namely ballistic, subdiffusive, and Brownian, as well as the crossover from one regime to another—are retrieved. Within this
approach, the transition time from the ballistic to the subdiffusive regime and the spectrum of relaxation times underlying the
transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the
mean-square displacement derived in the framework of this model and the mean-square displacement of a protein diffusing
in a membrane calculated through molecular dynamics simulations.
SIGNIFICANCE This study reports a generalized Langevin equation model, based on a three-parameter Mittag-Leffler
memory kernel, to describe a protein laterally diffusing in a membrane. The model captures the different dynamical
regimes, namely ballistic, subdiffusive, and Brownian, as well as the crossover between them. The spectrum of relaxation
times underlying the transition from the subdiffusive to the Brownian regime is given.
INTRODUCTION

Lateral diffusion in membrane is key for cellular informa-
tion processing (1). Cell membrane fluidity determines lipid
and protein mixing, thus regulating diffusion-limited
biochemical interaction rates responsible for signal trans-
duction from the extracellular to the intracellular
environment.

In the last few years, it has been studied how the biolog-
ical structures and features of living cells, such as mem-
brane composition, concentration of proteins in
membrane, compartmentalization, and crowding, affect
the diffusion of proteins and lipids in membrane (2,3). A
plethora of experimental studies in cellular membranes
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(4–8) and in vitro lipid bilayers (9–11), as well as computer
simulations of minimalistic model membranes in crowding
conditions (12–17), have shown a deviation from the
simple Brownian diffusion, in which the random displace-
ments are described by a Gaussian probability distribution
and the mean-square displacement (MSD) increases line-
arly in time when time lags much longer than the typical
collision time are considered (MSD f Dt, where D is the
diffusion constant, D ¼ kBT/m, with kB, T, and m being
the Boltzmann constant, the temperature, and a constant
accounting for the geometry of the particle and the kine-
matic viscosity of the environment, respectively). One of
the most familiar phenomena is indeed a sublinear, po-
wer-law increase of the MSD f Dat

a, with 0 < a < 1
and Da representing a diffusion constant with the physical
dimensions of [L2/ta].

Such ‘‘subdiffusive’’ dynamics, also referred to as
anomalous diffusion, is commonly attributed to the
densely packed and heterogeneous structures resulting
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GLE for membrane protein diffusion
from the crowding of the biological membranes as dis-
cussed in (12,18). Notably, atomistic and coarse-grained
simulations, as well as this study, have also shown subdif-
fusive behavior for lipids and proteins in simple lipid bi-
layers in the limit of infinite protein dilution (19–21).
Moreover, as observed in many viscoelastic systems, sub-
diffusivity is a transient dynamical behavior (22). After
the short-time ballistic regime, in which the tagged parti-
cle freely diffuses (MSD f (kBT/M)t2, with M being the
particle’s mass), the interactions with the medium and
its specific fluidic and mechanical properties can lead to
nontrivial persistent correlations responsible for the sub-
diffusive behavior (23). Yet, for time lags exceeding
some characteristic time, the standard Brownian dynamics
is recovered. This Brownian regime is well described by
the celebrated Saffman and Delbr€uck model (24,25) and
its extensions (26–30), and a logarithmic dependence of
the diffusion coefficient as a function of the protein radius
(D f log(1/R)) is found. Nevertheless, in protein-crowded
membranes, a deviation from the Saffman and Delbr€uck
model law has been shown (31), and one finds D f 1/
R. The crossover from the subdiffusive to the standard
Brownian dynamics can take place over a quite large
time window, and the transition onset strongly depends
on packing and crowding, ranging from a tenth to hun-
dreds of nanoseconds for lipids in protein-free membranes
or proteins in membranes at infinite protein dilution up to
arbitrarily long timescales for crowded real systems
(20,22,32). As a consequence, diffusive properties can
no longer be characterized by a single diffusion constant
or by a single exponent a.

Several theoretical frameworks have been introduced to
reproduce the subdiffusive behavior and describe the phys-
ical mechanism behind it (see, for instance, (22) and refer-
ences therein for a complete overview on their theoretical
foundations and applications to biological systems).
Among them, we recall the so-called Gaussian models
such as the fractional Brownian motion (FBM) (33) and
the generalized Langevin equation (GLE) (22), in which
the statistics of the noise in the relevant stochastic equa-
tions is still assumed to be Gaussian, as in the Langevin
approach for normal Brownian diffusion, but, differently
from this, the noise displays persistent power-law correla-
tions (power-law Gaussian noise), leading to a sublinear in-
crease of the MSD.

The FBM is defined as a zero mean Gaussian process
B(H)(t), where H is in the interval (0, 1) and its autocorrela-
tion function is CBðHÞðtÞBðHÞðtÞD¼ (|t|2H þ |t|2H � |t � t|2H)/
2 for any t, t R 0 (22,34,35). Because the FBM is a gener-
alization of the Brownian motion, which is obtained for H¼
1/2, it is in general a non-Markovian process. The FBM pro-
cess has two properties: self-similarity and stationary incre-
ments. Self-similarity means that the time segment of the
FBM trajectory has the same behavior as any segments of
other timescales after an appropriate normalization. Second,
stationary increment means that the distribution of B(H)(t)�
BH(t) does not depend on the starting time t but just on the
time lag t � t.

The GLE is an extension of the Langevin equation to ac-
count for memory effects in the particle-environment inter-
actions. To do that, one generalizes the Stokes drag term to a
convolution of the velocity of the particle with a memory
kernel representing a generalized time-dependent friction
(36). The random fluctuating forces, describing the colli-
sions between the particles composing the environment
and the Brownian particle, do not produce a white noise
(as in the Langevin dynamics) but a colored noise related
to the generalized time-dependent friction through the fluc-
tuation-dissipation theorem. Of course, crowding effects
may render the Gaussianity of viscoelastic systems invalid
(see, for instance, (12) for membrane systems and (18) for
three-dimensional systems).

Another important class is the one of the continuous-time
random walks (CTRWs) (22). Differently from the FBM-
GLE family, in which motion is fueled by Gaussian noise,
CTRWs naturally have non-Gaussian probability densities.
Within the CTRW description, particles undergo a series
of displacements in a homogeneous medium according
with a waiting-time distribution. Anomalous transport is
connected with a power-law tail in the waiting-time distribu-
tion such that even the mean waiting time is infinite. The
central-limit theorem does not apply, as longer and longer
waiting times are sampled.

Finally, another important category is represented by the
Lorentz models (22), which consider spatially disordered
environments in which the particle explores fractal-like
structures, leading to anomalous dynamics.

Recently, in the framework of the GLE model, hard
exponential and soft power-law truncation (tempering)
of power-law memory kernels (37), as well as exponen-
tially truncated three-parameter Mittag-Leffler-based
memory kernels (38), have been used to quantitatively
reproduce the transition from subdiffusive to normal
diffusion. Both exponential and soft power-law truncation
imply the introduction of a characteristic crossover time,
related to a maximal correlation time in the driving noise.
Applications of these models to the analysis of the MSD
of lipids in simple lipid bilayers have shown that the
crossover time is related to the timescale of mutual ex-
change between lipids (32,39). Compared to simply
combining an anomalous and a normal diffusion law for
the MSD, such phenomenological models naturally yield
the emergence of subdiffusive-to-normal crossover dy-
namics into a unique model, in which the type of trunca-
tion governs the crossover shape.

To address this problem in the case of laterally
diffusing membrane proteins, here we propose a GLE-
based model in which the memory kernel is borrowed
from a viscoelastic representation of the lipid membrane
(22,40–45). Specifically, we represent the kernel in
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terms of a viscous (instantaneous) and an elastic (nonin-
stantaneous) term modeled through, respectively, a Dirac
d function and the solution of the Prabhakar fractional
derivative (46,47), i.e., a three-parameter Mittag-Lef-
fler-based function (48,49). We note that the three-
parameter Mittag-Leffler function has also been used
in different contexts to model viscoelastic effects (50–
52). We show that imposing a specific relationship be-
tween the parameters of the three-parameter Mittag-Lef-
fler function naturally yields the emergence of the
different dynamical regimes of the protein (ballistic,
subdiffusive, and Brownian) and the crossover between
them, with a well-defined finite diffusion coefficient,
without introducing hard exponential truncation function
(used in the mathematical study of (38)). The spectrum
of relaxation times underlying the transition from the
subdiffusive to the Brownian regime is derived. The
reliability of the proposed GLE model is tested versus
the MSD data of a protein (the muscarinic M2 receptor)
diffusing in a mixed membrane (containing some of the
most abundant species in neuronal cell) and in simpler
bilayers made of pure POPC (1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine) and POPC/cholesterol 50:50.
MSD data are produced by molecular dynamics (MD)
simulations. Although not exhaustive, this analysis sup-
ports the reliability of the proposed model in providing
a consistent picture of protein diffusion. The results on
mixed membrane are presented in the main text, and the
ones on simpler bilayers are presented as Supporting
materials and methods, Section IV. The results are
then discussed all together in the main text.

From a continuum perspective, the reliability of the pro-
posed kernel in describing the transition among the different
dynamical regimes suggests this function as a possible
candidate to describe the time-dependent membrane
response within the constitutive equation (as done in (53)
for a simpler model). This topic will be addressed in a forth-
coming work together with a systematic study on the depen-
dence of the Mittag-Leffler parameters on the membrane
composition.
MATERIALS AND METHODS

Generalized Langevin equation for protein
diffusion

Our aim is to model the transition of a protein diffusing laterally in a lipid

bilayer from ballistic to subdiffusive to Brownian motion in terms of a GLE

of the form

M
dUc

dt
ðtÞ

¼ �
Z t

0

zðt � uÞUcðuÞ duþ XðtÞ; (1)
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where Uc(t) ˛ R2 denotes the protein’s center-of-mass velocity in the xy

plane, M is the protein mass, z is the generalized friction, and X(t) ¼
{Xi(t)}i ¼ x,y is a two-dimensional Gaussian distributed colored noise that

satisfies the fluctuation-dissipation theorem

CXiðtÞ XjðuÞD ¼ 2 kBT zðt� uÞdij; i ¼ x; y: (2)

Here, we model the friction term by

zðtÞ : ¼ M

�
u2

sd

�
t

ts

�
þu2

0

� t
t

�n�1

Ed
l;n

�
�
� t
t

�l
��

; (3)

where us¼ 1/ts and u0 have the physical dimension of a frequency and Ed
l;n

denotes the three-parameter Mittag-Leffler function, also called the Prabha-

kar function (48,49), with the additional parameter t setting the observation

timescale of the noninstantaneous component. The function edl;nðt =tÞ :¼
ðt=tÞn�1Ed

l;n[�t/t)l] is sometime referred to as the generalized three-

parameter Mittag-Leffler function.

The time-dependent functions are dimensionless, and the generalized

friction z has the physical dimension of [Mt�2]. The normalized function

z/M is generally referred to as the memory function. For physical reasons,

to have a monotonic kernel function z, which ensures a monotonic energy

decay in isolated systems and a non-negative spectral distribution, the pa-

rameters of the Mittag-Leffler function have to satisfy the relation (54)

0 < l % 1 and 0 < ld % n % 1. We refer to Appendix A for an illustra-

tion of the asymptotic behavior of the three-parameter Mittag-Leffler func-

tion. A survey on the three-parameter Mittag-Leffler function and the

generalized three-parameter Mittag-Leffler function, with varying the pa-

rameters l, n, and d in the intervals to ensure complete monotonicity, is

presented in the Supporting materials and methods, Section II. The numer-

ical implementations adopted in this work to evaluate the Mittag-Leffler

functions are illustrated as well (see Supporting materials and methods,

Section I).

Note that by setting edl;n(t/t) equal to 1 in Eq. 3, the model reduces to the

confined diffusion in a harmonic potential, where u0 is the characteristic

frequency of the confining potential and the corresponding MSD tends to

the plateau value 2dkBT/(Mu2
0) for t / N (d being the dimension of the

problem).

Instead, replacing edl;n(t/t) with a simple exponential function exp(�t/t)

leads to the diffusion in a transient confining harmonic potential with

escape time t, which represents the transition from a high-frequency elastic

regime to a low-frequency viscous regime (53). The corresponding MSD

shows a transient plateau, and then, for time lags larger than t, the

standard Brownian dynamics is recovered with diffusion coefficient kBT/

½Mðus þu2
0tÞ�.

edl;n(t/t) being a generalization of the exponential function, which can be

written as a superposition of exponential decay rates f (54,55),

edl;n

� t
t

�
¼

� t
t

�n�1

Ed
l;n

�
�
� t
t

�l
�
¼

Z N

0

pd;tln ðf Þe�ftdf ; (4)

where

pd;tln ðf Þ ¼ tðf tÞld�n
sin

�
pðn� ldÞ þ dqtlðf Þ

	
p
�ðf tÞ2l þ 2ðf tÞlcosðplÞ þ 1

	d=2;
qtlðf Þ ¼ arg

�ð�f tÞl þ 1
	
;

(5)

for 0 < l % 1 and 0 < ld % n % 1, one can see the proposed model as a

generalization of the diffusion in a transient confining potential of fre-

quency u0 with a relaxation rate spectrum given by pd;tln (f). The parameters

l, n, d, and t shape the form and the observation timescale of pd;tln (f). A
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survey of the impact of these parameters on pd;tln (f) is given in the Supporting

materials and methods, Section II.
Solution of the model and statistical observables

To solve the GLE model Eq. 1, we adopt standard methods for stochastic

differential equations as used in (49). Applying the Laplace transform to

Eq. 1 and denoting the Laplace transformed functions with the superscript

,̂ it reduces to

M


s bUcðsÞ�Ucð0Þ

� ¼ � bzðsÞ bUcðsÞ þ bXðsÞ; (6)

and solving for the velocity vector Ûc, we obtainbUcðsÞ ¼ M Ucð0Þ bgðsÞ þ bXðsÞ bgðsÞ; (7)

where we have defined the so-called bg(s) relaxation function given by

bgðsÞ : ¼ 1

Msþ bzðsÞ: (8)

The Laplace transform of z reads (49)

bzðsÞ ¼ xs þ xp
ðtsÞdl�n

ð1þ ðtsÞlÞd; (9)

where we have introduced, for simplicity,

xs :¼ Mus;

xp :¼ Mup;

up :¼ u2
0t:

(10)

The parameters xs and xp have the dimension of a friction, and up has the

dimension of a frequency.

Now, by applying the inverse Laplace transform to Eq. 7, one obtains the

formal solution for the velocity vector by

UcðtÞ ¼ CUcðtÞDþ
Z t

0

gðt � uÞ XðuÞ du;
CUcðtÞD ¼ M Ucð0Þ gðtÞ:

(11)

By taking the scalar product of Eq. 11 with Uc(0) and then taking the

average, one obtains the velocity autocorrelation function (49,56–59):

CvðtÞ : ¼ CUcðtÞ $Ucð0ÞD ¼ 2kBT gðtÞ; (12)

where we used CUcð0Þ $XðuÞD ¼ 0 and CUcð0Þ $Ucð0ÞD ¼ 2kBT/M. Knowing

the velocity autocorrelation function (VACF), one can derive the MSD from

the well-known convolution relation (60)

CDX2ðtÞD : ¼ CkXcðtÞ�Xcð0Þ2 k D

¼ 2d

Z t

0

ðt� tÞCvðtÞ dt; (13)

where Xc is the center-of-mass position vector related to the velocity vector

through the time derivative _Uc ¼ Xc and d is the dimension of the physical

space (we will set d ¼ 2 for future applications).

In the Laplace domain, Eq. 13 reads
CDbX2ðsÞD ¼ 2dkBT
bgðsÞ
s2

¼ 2dkBT bIðsÞ; (14)

where we have introduced the second relaxation function Î(s) defined by

bIðsÞ : ¼ bgðsÞ
s2

¼ 1

Ms3 þ s2 bzðsÞ: (15)

Finally, the time-dependent diffusion coefficient can be defined as (9,59)

DðtÞ : ¼ 1

2d

dCDX2
cD

dt
ðtÞ; (16)

whose physical dimension is [L2/t]. In the limit t/N, this simply reduces

to the standard definition of the Brownian diffusion coefficient DN, and the

ratioD(t)/DN accounts for the deviation over time from the Brownian diffu-

sion. Then, the time derivative of Eq. 13 yields

DðtÞ ¼ KBT HðtÞ; (17)

where we have introduced the third relaxation function

HðtÞ : ¼
Z t

0

gðtÞ dt: (18)

We note that the Laplace transform of the diffusion coefficient is

DðsÞ ¼ kBT
bgðsÞ
s

; (19)

and therefore,

bHðsÞ ¼ kBT
bgðsÞ
s

: (20)

We have reduced the problem of studying the protein diffusion

throughout the lipid membrane to that of computing the inverse Laplace

transform of the relaxation functions Eqs. 8, 15, and 20 so that the correla-

tion functions of interest are found:

CvðtÞ ¼ 2kBT gðtÞ;
DðtÞ ¼ kBT HðtÞ;
CDX2ðtÞD ¼ 4 kBT IðtÞ:

(21)

One could be tempted to compute analytically the inverse Laplace trans-

form of the relaxation functions bg, bH , and Î. Unfortunately, this is not al-

ways possible, and it depends on the mathematical expression of the

kernel function z. Nevertheless, one can exploit numerical methods, as

we will see later, to obtain numerical solutions for the observables ex-

pressed in Eq. 21.
Asymptotic behaviors of statistical observables

The short-time behavior of the kernel function z(t) defined by Eq. 3

can be obtained by taking the first term in the series representation of

the Mittag-Leffler function (Eq. 35 in Appendix A), which is
Biophysical Journal 120, 4722–4737, November 2, 2021 4725
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Ed
l;nð�zÞz 1

GðnÞ; ðjzj� 1Þ; (22)

and we obtain the short-time kernel function zS by

zSðtÞ ¼ xs dðtÞ þ
xp

tn
tn�1

GðnÞ; ðt� tÞ; (23)

whose Laplace transform reads

bzSðsÞ ¼ xs þ
xp

tn
s�n: (24)

By substituting the asymptotic kernel function in the relaxation func-

tions, we get the short-time asymptotic relaxation functions

bgSðsÞ :¼
1

Msþ xs þ
xp

tn
s�n

;

bHSðsÞ :¼ bgSðsÞ
s

¼ 1

Ms2 þ xssþ
xp

tn
s�nþ1

;

bISðsÞ :¼ bgSðsÞ
s2

¼ 1

Ms3 þ xss
2 þ xp

tn
s�nþ2

:

(25)
CB
v ðtÞz2 kBT

t�dlþn

xp

tdl�n�1

Gðdl� nÞ � 2 kBT
dtl

xs
t�l�1

XN
n¼ 0

�
� f

tn�dl

�n
n tðn�dlÞn

G½ðn� ldÞn� l�;

DBðtÞzkBT
t�dlþn

xp

tdl�n

Gððdl� nÞ þ 1Þ;

CDX2D
BðtÞz4 kBT

t�dlþn

xp

tdl�nþ1

Gððdl� nÞ þ 2Þ:

(28)
By adopting the methods introduced in (61,62), we can apply the in-

verse Laplace transform so as to obtain the analytic behavior of the sta-

tistical observables at short time in accordance with definitions Eq. 21,

namely

CS
vðtÞz

2 kBT

M
½1� ust�;

DSðtÞzkBT

M

h
1� ust

2

i
t;

CDX2D
SðtÞz2 kBT

M

h
1� ust

3

i
t2:

(26)

Here, one can see that us defines the timescale of the end of the ballistic

regime.

The long-time behavior can be obtained by imposing the asymp-

totic regime M
xs
s << 1 in the relaxation functions, which, applied
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to Eqs. 8, 20, and 15, respectively, yields the asymptotic relaxation

functions

bgBðsÞ :¼
1

xs

0BB@ 1

1þ f

tn
sdl�n


t�l þ sl
�d
1CCA;

bHBðsÞ :¼ 1

xs

0BB@ 1

sþ f

tn
sdl�nþ1

t�l þ sl

�d
1CCA;

bIBðsÞ :¼ 1

xs

0BB@ 1

s2 þ f

tn
sdl�nþ2

t�l þ sl

�d
1CCA;

(27)
where we introduced the dimensionless parameter f ¼ xp/xs. As for

the short-time behavior, we adopt the same methods introduced in

(61,62) so that the inverse Laplace transforms of the above relaxation

functions lead to the analytical expression for the statistical

observables.
To recover the Brownian regime in the long-time limit, D(t) has to

approach a constant DN > 0. From the second equation in Eq. 28, one no-

tices that this requirement is satisfied if and only if

dl� n ¼ 0: (29)

The exact mathematical expression for DN can be obtained considering

the nonapproximated expression for bH(s), defined by Eq. 20, which under

the constraint Eq. 29 reads

bDðsÞ ¼ kBT

s

0BB@ 1

M sþ xs þ xp

ð1þðt sÞlÞd

1CCA:

By taking the limit s / N, the leading term is
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bDðsÞzkBT

s

1

xs þ xp
:

The inverse Laplace transform provides then the exact expression for the

asymptotic diffusion coefficient

DN ¼ kBT

xs þ xp
: (30)

By imposing the constraint Eq. 29 in expressions Eq. 28, we finally get

the asymptotic behavior of the VACF:

CB
v ðtÞz 2 kBTdt

l t�l�1

Gð�lÞ
xp
�
x2s


1þ xp
�
xs
�2

¼ 2 kBT

M
dtl

t�l�1

Gð�lÞ
up

�
u2

s

1þ up

�
us

�2; (31)

where we impose l;Z and, by definition, 1/G(0) ¼ 0. We note that in the

limit of xp >> xs, we have

CB
v ðtÞz

2 kBT

M

dt�l

xp

t�l�1

Gð�lÞ: (32)

Similarly, for the MSD, we have

CDXðtÞ2Dz4 kBT

xp
t; (33)

so that the linear Brownian regime in the long time is recovered. Notice that

in this limit, the friction is dominated by the component xp. Finally, we sum-

marize the physical role of each parameter in Table 1.
Data availability

All the Mathematica codes used to produce the results presented in this

manuscript will be made available by the authors upon request.
TABLE 1 Summary of the physical role of the parameters

Parameters Physical role

us characteristic frequency setting the timescale

ts ¼ 1/us of the end of the ballistic regime

u0 characteristic frequency of the transient

confining potential

xs friction component coming from the

instantaneous response

xp friction component coming from the retarded

response; it is the leading term in the

asymptotic diffusion coefficient

xp þ xs total macroscopic friction felt by the protein

t timescale of the retarded (elastic) response of the

lipid membrane

d, l, n dl ¼ n to asymptotically get the Brownian

regime; they shape the transition from

subdiffusive-to-Brownian regime
RESULTS

We test in this section the developed theoretical model by
applying it to a realistic system of a protein in a mixed mem-
brane, as well as performing two control tests of simpler
scenarios to verify the coherence and generality of the pro-
posed theoretical model. We proceed by presenting the
application first, followed by the control tests.
M2 muscarinic acetylcholine receptor in mixed
membrane

As an application, we fitted the model to in silico MSD data
of the center of mass of a protein laterally diffusing in a
fully hydrated mixed membrane, containing some of the
most abundant lipid species in neuronal cell membranes
(63). We used as model protein the M2 muscarinic acetyl-
choline receptor (M2 receptor), an inhibitory class A
G-protein-coupled receptor expressed both in the central
and parasympathetic nervous systems (64). The inactive
form of M2 (64) (Protein Data Bank: 3UON) was
embedded in the mixed lipid bilayer (see Appendix B for
the lipids composition). The antagonist and the fused T4
lysozyme, which in the original Protein Data Bank struc-
ture replaces the third intracellular loop of the receptor,
were removed from the system. About 14,000 water mole-
cules were added, as well as Naþ and Cl� ions, to
neutralize the system and reach a physiological concentra-
tion of 0.15 M. A snapshot of the simulated system is
shown in Fig. 1. The characteristic size of the system and
the simulation details are reported in Appendix B.

The in silico MSD and VACF data are extracted from qua-
siatomistic Martini MD simulations

The theoretical asymptotic behavior of the VACF, as
derived from the model by using the MSD best-fit param-
eters, is compared to in silico VACF data (65–67). We
also compute the in silico MSD of the surrounding lipids.
Within this process, we distinguish between NEAR and
FAR lipids. NEAR lipids are selected by picking the lipids
spending more time within a threshold distance of 3 nm
from the protein center of mass (on average, 84 lipids are
found within this threshold). Actually, because of the diffu-
sion, lipids initially satisfying the distance criterion may
diffuse away and other lipids can enter within the NEAR
lipid radius. Hence, we selected the 84 lipids with the
largest residence time within the threshold radius. FAR
lipids are defined as the complementary ensemble. For
each group of lipids, the average representative MSD
(VACF) is calculated as the mass weighted sum of the
MSD (VACF) of the lipids in the group.

Gaussianity check

The protein dynamics in a lipid membrane has been
observed to be non-Gaussian in several cases such as, for
Biophysical Journal 120, 4722–4737, November 2, 2021 4727



FIGURE 1 Snapshot of the simulation box created with the Martini force

field. For better visualization, we do not illustrate water and ion molecules.

We report (top) front view and (bottom) top view of the membrane-protein

system. The protein is represented by the black domain, and the lipids are

colored depending on the species. Cholesterol: red, POPC: blue, DOPC

(1,2-dioleoyl-sn-glycero-3-phosphocholine): lime (lighter) green, PAPI

(1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol): white, DGPE

(1,2-digondoyl-sn-glycero-3-phosphoethanolamine): magenta, DPPC (1,2-

dipalmitoyl-sn-glycero-3-phosphocholine): orange, POPS (1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphoserine): violet, DPSM (N-palmitoyl-D-sphin-

gomyelin): yellow, PNSM (N-nervonoyl-D-sphingomyelin): pink, POSM

(N-oleoyl-D-sphingomyelin): (darker) green. To see this figure in color,

go online.

FIGURE 2 Cumulative distribution P(r2, D) with D ¼ 1, 10, 100, 400,

1000, 5000, and 10,000 ns (from left to right). The dashed line corresponds

to a theoretical curve proportional to r2. To see this figure in color, go online.
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instance, compartmentalization and crowding (12). In our
case, we work at infinite protein dilution, but the membrane
is mixed and contains a cholesterol concentration of �50%,
which could cause local inhomogeneities.

As a first step, we thus verified whether sizable deviations
from a Gaussian process are observed. By adopting the same
approach as in (12), we have computed the cumulative distri-
bution P(r2, D) for the squared displacements of the protein
varying the time lagD as shown in Fig. 2. Here, we recall that
the cumulative distribution of the square displacements for
the two-dimensional motion isP(r2, D) ¼ R r

0
P(r0, D)2pr0dr0,

where P(r, D) is the propagator (6,68,69). In the case of
4728 Biophysical Journal 120, 4722–4737, November 2, 2021
a Gaussian (anomalous) diffusion, it takes the form
P(r, D) ¼ exp[�r2/2sD)]/(2psD), with sD ¼ 2DaD

a, which
yields the cumulative distribution P(r2, D) ¼ 1 � exp[�r2/
(4DaD

a)]. The plot of�log[1�P(r2, D)] vs. r2 in Fig. 2 dis-
plays a reasonable power-law scaling with exponent 2. Thus,
despite the high cholesterol content of the model bilayer
(�50%), the protein dynamics turns out to be Gaussian and
thus compatible with the model hypothesis.

Notice that the model has not been fitted to the MSD of
the mixed membrane lipids because, as observed by us in
this work (see Supporting materials and methods, Section
V) as well as by other authors dealing with membranes
with cholesterol concentrations of the order of �50%
(70), lipids dynamics deviates from a truly Gaussian pro-
cess. However, we derived the dynamical properties of the
embedding bilayer from a phenomenological (model-free)
analysis of lipids’ MSD and VACF.
Fitting the model to MD data

After this test, the model was then tested against the lateral
MSD data of the protein extracted from the MD simulations.
Two different flavors of the model have been implemented,
corresponding to different choices of the free parameters (q)
of the model.

1. Model M1: q ¼ (us, up, t, l, d), with constraint n ¼ dl;
and

2. Model M2: q ¼ (us, up, t, l), with constraint d ¼ 1
together with the condition dl ¼ n, then gives l ¼ n.

ModelM1 corresponds to a three-parameter Mittag-Leffler
function and is the more generic model, whereas model M2



TABLE 2 Best-fit parameters, fixed parameters, and parameters derived from the best-fit parameters for model M2

da lb ¼ n tb (ns) us
b (ps�1) up

b (ps�1) u0
c (ps�1) xs

c (Pa $ s $ mm) xp
c (Pa $ s $ mm) DN

c (mm2 $ s�1)

1 0:7150:730:70 13:415:112:0 0:981:110:86 447462433 0:1830:1890:175 0:0670:0770:059$10
�3 0:03090:03190:0299 0:1370:1420:133

The sub- and superscripts represent the 95% confidence intervals.
aFixed parameters.
bBest-fit parameters.
cParameters derived from the best-fit parameters.
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reduces to a two-parameter Mittag-Leffler function, which
has already been used in the literature in the context of visco-
elasticity (71). The mass of the protein and the temperature
are fixed toM ¼ 41,697 g/mol and T ¼ 310 K in both imple-
mentations. The expected values of the parameters q and
their uncertainties have been evaluated by using a Bayesian
approach with a flat (uninformative) prior distribution for
the parameters (72), i.e., all the parameter values are assumed
to be equally probable before analyzing the data. Details on
the data analysis are presented in Appendix C.

Because of the mathematical complexity of the MSD
model, we do not provide an analytical expression for the
MSD in the time domain. Hence, to carry out the fit, we
exploit its simple analytical expression in the Laplace space.
In fact, combining Eqs. 9, 20, and 21, under the condition
dl ¼ n, the model is written (in the Laplace domain)

CdDX2
DðsÞ ¼ 4 kBT

M

1

s2
1

sþ us þ up
1

ð1þðtsÞlÞd
: (34)

For a given set of parameters, the model is first evaluated
in the Laplace space through Eq. 34. Then, this numerical
expression is inverse Laplace transformed using the Mathe-
matica function ILT by Horváth et al. (73–75). This allows
one to evaluate the model in the time domain and thus calcu-
late the residuals between the model and MD data for each
set of parameters.

Model M1 was investigated by sampling the parameter
space over a quite wide grid of values. This analysis shows
that the best fit is obtained for d �1, which points toward
model M2. We thus investigated model M2 with a finer sam-
pling in the parameter space (see Appendix C for the grid of
the investigated parameter values). Both models provide a
reasonable fit in terms of reduced ~c2, without significant
changes for the best-fit parameters. We thus report here in
the main text the data and the analysis relevant to model
M2, and the data for model M1 are available in Appendix C.

The best-fit parameters and the 95% confidence intervals
are summarized in Table 2 together with the parameters u0,
xs, and xp derived thereof and the Brownian diffusion coef-
ficient DN.

The one-dimensional marginalized posterior distribu-
tions, used to estimate the best-fit values and the confi-
dence intervals, are illustrated in Fig. 3 together with
the two-dimensional marginalized posterior distributions
showing the correlations between the parameters. See
Appendix C for more details about their calculations.
The comparison in log-log scale between the model and
the numerical MSD data of the protein diffusing in the
mixed membrane is shown in Fig. 4. To highlight the phys-
ical role of the model parameters, we report in the same fig-
ures the asymptotic MSD obtained from the model
CDr2ðtÞDt/N ¼ 4 DN t, with DN given by Eq. 30, the char-
acteristic timescale t of the retarded response, the transition
timescale 1/us from the ballistic to the subdiffusive regime,
and the characteristic timescale 1/u0 associated to the fre-
quency of the transient confining potential.

We emphasize that the reported numerical values of the
diffusion coefficient DN may suffer from finite size effects
because of the periodic boundary conditions and the limited
box size used in simulations (29,76). In accordance with the
error estimation reported in the literature for systems analo-
gous to the one discussed here (i.e., protein radius �1.8 nm,
total water thickness 6.2 nm, lateral membrane edge
16.6 nm, Martini force field), an underestimation of
�40% is expected (29,76).

The evolution of the protein time-dependent diffusion co-
efficient, as defined in Eq. 16 in terms of derivative of the
MSD, is shown in Fig. 5 upon normalization by DN (blue
curve). The theoretical values of D(t) are calculated from
the second equation in Eq. 21 by inverse Laplace transform-
ing Eq. 20 through the numerical function by Horváth et al.
(73–75). The values of D(t) from MD are obtained through
the numerical derivative of the MSD. For comparison, the
same observables for NEAR and FAR lipids are shown as
well (yellow and green curves). The MSD of NEAR and
FAR lipids is shown in the Supporting materials and
methods, Section V.

The coefficient a(t), expressing the phenomenological
instantaneous dependence of the MSD on time (MSD f
ta(t)) as calculated from the logarithmic derivative of the
simulated MSD data, is reported in the same figure.

A comparison between protein and NEAR(FAR)-lipids
VACFs at short-time lags is given in Fig. 7. Long-time
VACF tails are shown in the Supporting materials and
methods, Section V.

Finally, exploiting the integral representation of edl;n(t/t)
by Mainardi (54,55) (Eq. 4), we plot the relaxation rate
spectrum pd;tln (f) (Eq. 5) for the optimally fitted parameters
of protein (Fig. 6). This provides the contribution of the
different relaxation rates to the memory kernel. 1/t sets
the maximum of the spectrum, and l (¼ n) regulates the
width (with the setting d ¼ 1, the spectrum tends to a Dirac
d function when l (¼ n) / 1).
Biophysical Journal 120, 4722–4737, November 2, 2021 4729



FIGURE 3 One-dimensional and two-dimen-

sional marginal distributions for model M2. The

highlighted area below the one-dimensional mar-

ginal distributions corresponds to 95%. The ellip-

ses in the two-dimensional marginal distributions

correspond to 68 and 95% confidence regions.

The reduced ~c2 is 0.94. To see this figure in color,

go online.
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Liquid argon

To test the ability of Mittag-Leffler functions in capturing
small deviations from the ideal Dirac d function kernel pre-
dicted for an ideal Brownian system, we analyzed the MSD
of liquid argon. The details and results are reported in the
Supporting materials and methods, Section III. The memory
kernel of argon predicted by the model compares quite well
with the numerical calculations reported in the literature
(77,78). A comparison between the VACF predicted by
the model and the one extracted from MD simulations is
shown as well (see Supporting materials and methods).
Simple membranes with and without protein

As an additional control of the reliability of the model, we
apply the workflow used for M2 diffusing in mixed mem-
brane on simpler membrane systems showing a truly
Gaussian behavior, such as lipids diffusing in pure POPC,
protein (M2) diffusing in pure POPC, and protein (M2)
diffusing in POPC/cholesterol 50:50. Note that the Gaus-
sianity of membrane systems in protein-poor conditions
with cholesterol concentration up to �20% was already es-
tablished in (12,17,39). The Gaussianity test for the receptor
diffusing in pure POPC and in the two-component mem-
brane POPC/cholesterol 50:50 is reported in the Supporting
materials and methods, Section IV. The results of the fitting
to the MSD data of the three membrane systems are reported
in the same section of the Supporting materials and
4730 Biophysical Journal 120, 4722–4737, November 2, 2021
methods, and they are further discussed together with the
ones of the protein diffusing in the mixed membrane in
the Discussion section below.
DISCUSSION

Both Figs. 4 and 5 show that the subdiffusive-to-Brownian
dynamics transition of the protein lasts from tens to hundreds
of nanoseconds and that Brownian dynamics is fully recov-
ered only at time lags of �400 ns. This timescale indicates
the maximal sizable relaxation time contributing to the mem-
ory kernel. Within this timeframe, the protein moves
�0.5 nm, to be compared with the radius of an average lipid,
which is �0.4 nm. The local slope a(t) of the NEAR lipids
MSD is�0.8–0.9 for time lags of the order of tenths of nano-
seconds, but the truly Brownian dynamics (a ¼ 1) is fully
recovered for both NEAR and FAR lipids at approximately
the same timescale of the protein, i.e., 400 ns. Interestingly,
this timescale is close to the observed average residence
time of the lipids in the NEAR shell (�350 ns). For larger
time lags, NEAR lipids exit from the NEAR shell and start
to behave as FAR lipids. Indeed, for t / N, the MSDs of
both NEAR and FAR lipids attain the same limit (hence
the same Brownian diffusion coefficient). See Fig. S12 in
Supporting materials and methods. Furthermore, by
comparing long-time tails of the VACF of both NEAR and
FAR lipids to the one of the protein, one observes that nega-
tive correlations seem to persist for shorter time lags in the
case of NEAR lipids (�5 ps) compared to FAR lipids and



FIGURE 4 Comparison between the MSD data from MD simulations

(blue dots) and GLE model (blue line). The long-time asymptotic MSD

(black) and the characteristic times t (green) and u�1
s (orange) and u�1

0

(cyan) are also shown. To see this figure in color, go online.

FIGURE 5 (Top) Local MSD dependence on time of protein and NEAR

and FAR lipids. a ¼ 2 indicates the ballistic regime, a ¼ 1 the Brownian

regime, and 0 < a < 1 the subdiffusive regime. (Bottom) Comparison be-

tween protein’s time-dependent diffusion coefficient normalized to the

value DN ¼ kBT/(xs þ xp) as derived from the model and the numerical

counterpart derived from MD simulations. Numerical results for NEAR

and FAR lipids as derived from MD simulations are shown as well. Gray

lines help to visualize the onset of the Brownian dynamics. To see this

figure in color, go online.
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protein (�15 ps) (see Supporting materials and methods, Sec-
tion V). In accordance with Eq. 31, long-time anticorrelations
of protein’s VACF decay to zero as ��t�1 � l, where l is
0.71 (see Section Vof the Supporting materials and methods
for a graphical comparison between the VACF asymptotic
behavior predicted by the model and in silico VACF data).
Apart from a scaling factor, both NEAR and FAR lipid
VACFs show a similar trend. All these facts suggest that pro-
tein’s Brownian dynamics recovering is correlated with the
lipids’ shell relaxation and that in the subdiffusive regime,
protein moves concertedly with its neighbors.

Looking at short-time lags, the protein’s VACF shows a
shoulder occurring at approximately the timescale at which
the lipid’s velocities become anticorrelated (�0.28 ps for
NEAR lipids and 0.3 ps for FAR lipids) (see Fig. 7). This
could indicate a first collision event between the protein
and the lipid’s shell, after which the protein keeps moving
without turning back, whereas lipids turn back. Interest-
ingly, the end of the ballistic regime of the protein occurs
at 1/us z 1 ps, which possibly suggests an extended ballis-
tic regime after the first collision event with lipids.

Notice that us, u0, and l of the M2 protein diffusing in the
mixed membrane (cholesterol content �58%) are similar to
the ones obtained for M2 diffusing in POPC/cholesterol
50:50 (see Table S2), whereas in the case of M2 diffusing
in pure POPC, they are substantially smaller (�40, 80, and
60%, respectively). This suggests that, for a given diffusing
system, cholesterol plays a fundamental role in speeding up
the ballistic to (sub)diffusive transition, increasing the fre-
quency of the transient confining potential, and decreasing
the width of the relaxation rate spectrum. In the presence
of cholesterol, protein feels a transient confining potential
of higher frequency, but the width of the relaxation rates is
narrower. As for the maximum of the relaxation rate spec-
trum of the protein in the mixed membrane, it occurs at lower
frequencies (longer timescales) than for the protein diffusing
in POPC/cholesterol 50:50 (1/13.4 ns�1 vs. 1/1.8 ns�1,
respectively). Because the cholesterol content is similar in
the two membranes, these preliminary data suggest that the
Biophysical Journal 120, 4722–4737, November 2, 2021 4731



FIGURE 6 Distribution pd;tln (f) of relaxation rates f underlying the mem-

ory kernel. The gray line corresponds to 1/t, where t ¼ 13.4 ns. To see this

figure in color, go online.

FIGURE 7 Comparison between the VACF data from MD simulations

of protein and NEAR and FAR lipids. Dashed gray line indicates the point

at which lipid negative correlations start. To see this figure in color, go

online.
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higher heterogeneity of the mixed membrane, compared to
the two-component POPC/cholesterol 50:50, is the main fac-
tor responsible for this shift of the spectrum to lower fre-
quencies. Interestingly, comparing the value of 1/t of the
protein diffusing in pure POPC with the one of the protein
diffusing in the two-component POPC/Cholesterol 50:50,
one has that cholesterol shifts the relaxation rates spectrum
to higher frequencies. All together, these facts suggest that
not only does the maximum of the spectrum in the mixed
membrane seem to be essentially driven by the heterogeneity
of the membrane, but cholesterol alone would possibly act in
the opposite direction. Amore in-depth analysis is in progress
to understand the origin of this slowing down in the mixed
membrane.

All these findings suggest that the transient anomalous
diffusion effects stem from highly nontrivial interactions
of the protein with the fluid made up of lipid molecules
behaving as a whole, in contrast to more shapeshifting pro-
teins in water with fluctuating diffusivity (79).

Finally, our preliminary data on pure POPC membrane
(see Supporting materials and methods, Section IV and Ta-
ble S2) indicate that the proposed model is a priori adapted
to also describe the dynamics of lipids diffusing in a mem-
brane of pure POPC, although systematic work with varying
membrane composition is required to further check the
coherence of the parameters.
CONCLUSIONS

The proposed generalized Langevin equation-based model,
built on a memory kernel made of an instantaneous viscous
component d(t) and a retarded (elastic) component
4732 Biophysical Journal 120, 4722–4737, November 2, 2021
tdl�1Ed
l;dl(�(t/t)l), proved to be able to describe the transi-

tion of the lateral diffusion of a protein from the ballistic to
the subdiffusive regime and from the subdiffusive to the
Brownian regime when the constraint n ¼ ld is imposed.
Notice that the model has been tested and validated at infinite
protein dilution for a protein diffusing in a mixed membrane
(containing some of the most abundant species in neuronal
membranes), as well as in two-component POPC/cholesterol
50:50 and in pure POPC. In all of these conditions, protein
dynamics proved to be Gaussian. To the contrary, for lipids
diffusing in crowded conditions (high protein concentration
or cholesterol concentration higher than 20%), deviations
from the Gaussianity hypothesis underlying the proposed
model have been reported (12), and it has been shown that
the non-Gaussian behavior is related to trapping times distrib-
uted according to a power law (80). In our study, we observed
sizable deviations from a Gaussian process for the dynamics
of the lipids of the mixed membrane, which has a cholesterol
content of the order of �50%. In all of these conditions, our
model cannot be applied.

Our findings suggest that the transient subdiffusive
behavior arises from the interactions between the protein
and the lipid matrix, inducing a transient confinement with
a large distribution of relaxation times. The protein moves
in a concerted way with the neighbor lipids. Within the pro-
posed model, the analysis of the selected use cases is compat-
ible with the picture that cholesterol speeds up the ballistic to
(sub)diffusive transition, increases the frequency of the tran-
sient confining potential, and decreases the width of the relax-
ation rates spectrum. A systematic study on the effect of



FIGURE 8 Illustration of the three-parameter Mittag-Leffler function

(solid lines) for three different set of parameters (blue: as presented in

Table 2; red: t ¼ 13.4 ns, l ¼ 0.7, n ¼ 0.98, d ¼ 1.4; green: t ¼ 13.4 ns,

l ¼ 0.7, n ¼ 1.0, d ¼ 1.0) as well as their corresponding long-time asymp-

totic decay (dashed lines). Notice that the case t¼ 13.4 ns, l¼ 0.7, n¼ 1.0,

d ¼ 1.0 reduces to the one-parameter Mittag-Leffler function, whose short-

time behavior corresponds to the stretched exponential exp(�t/t)l (86)

(black dashed line). To see this figure in color, go online.

TABLE 3 The number of lipids for each species composing

the membrane

Lipid type Upper leaflet number Lower leaflet number

Cholesterol 300 300

DOPC 12 12

DPPC 30 30

POPC 54 54

DGPE 12 12

POPS 18 18

PAPI 18 18

DPSM 54 54

PNSM 18 18

POSM 6 6

TABLE 4 The number of each constituent of the system

GLE for membrane protein diffusion
different membrane compositions on the distribution of
relaxation times is ongoing. A test on pure POPC membrane
indicates that the model can also be a priori applied to
describe the dynamics of lipids when the Gaussianity condi-
tions are verified (i.e., noncrowded conditions). Finally, we
remark that the application of the Mittag-Leffler functions
in several relevant stochastic processes, such as the fractional
Poisson process and CTRWs, has been discussed in (81).
Several applications to model viscoelastic effects can be
found in (50–52,82–84). Applications of Mittag-Leffler func-
tions in the context of obstructed diffusion (Lorentz gas) and
CTRWs are also of potential interest. We cite the work of
Hoefling and Franosch (22) on two-dimensional and three-
dimensional Lorentz gas with immobile obstacles, which
showed ballistic, subdiffusive, and diffusive motion as well
as the crossovers between them, and the work of Akimoto
et al. (80) on membrane systems in the framework of
CTRWs. Mittag-Leffler functions are also applied to describe
internal protein dynamics relaxation. To the best of our
knowledge, one of the first studies in this context is (85).

In a continuum perspective, one could use this function to
model the time-dependent (viscoelastic) membrane
response within the constitutive equation.
Number of water molecules 14,077

Number of Naþ ions 825

Number of Cl� ions 161

Number of lipids 1044

Number of proteins 1
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.09.033.
APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE
THREE-PARAMETER MITTAG-LEFFLER
FUNCTION

The three-parameter Mittag-Leffler function is defined as (48,49)

Ed
l;nðzÞ ¼

XN
k¼ 0

ðdÞk
Gðlk þ nÞ

zk

k!
; (35)

where (d)k is the Pochhammer symbol; G is the Euler-G function; and l,

n, and d could be, in general, complex numbers but with Re[l] > 0. The

long-time expression of the three-parameter Mittag-Leffler function follows

a power-law behavior given by (62)

Ed
l;nð�zÞz z�d

Gðn� dlÞ �
dz�ðdþ1Þ

Gðn� ðdþ 1ÞlÞ; ðjzj[ 1Þ:
(36)

A few different examples of Mittag-Leffler functions are illustrated in

Fig. 8 together with their asymptotic behavior. The plots are given for a

set of parameters satisfying the complete monotonicity condition, 0 < l

% 1, 0 < ld % n % 1. Note that the leading term in Eq. 36 is the first

one for ld < n, whereas for ld ¼ n, it is the second one.

The plot of the three-parameter Mittag-Leffler function shown in Fig. 8

is done with the Mathematica software by implementing the integral repre-

sentation of the generalized three-parameter Mittag-Leffler function as ex-

plained in the Supporting materials and methods, Section I.
APPENDIX B: NUMERICAL DETAILS

In this appendix, we report further details of the MD simulation setup. The

details about the constituents of the system, the membrane composition, the

geometrical parameters of the system, and the trajectory length are reported

in Tables 3, 4, 5, and 6, respectively.

The whole system was prepared by using CHARMM-GUI membrane

builder web server (87). The simulations were performed through the
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TABLE 6 Sampling time step and total length of the numerical

simulations

Regimes Sampling time step Time length

Ballistic 20 fs 1000 ps

Subdiffusive 20 ps 3 ms

Diffusive 5000 ps 100 ms

TABLE 5 Geometrical parameters of the simulated system

Upper leaflet Lower leaflet

Protein area 1152.12249 Å2 1126.52528 Å2

Lipid area 26,331.6 Å2 26,331.6 Å2

Total area 27,483.72249 Å2 27,458.12528 Å2

Protein X extent 26.06 Å –

Protein Y extent 24.69 Å –

Box Y extent 165.74 Å –

Box X extent 165.74 Å –

Box Z extent 109.31 Å –

Di Cairano et al.
GROMACS program suite (88–91), version 2016.3, in double precision, us-

ing a Martini force field (65–67) with the leap-frog integration algorithm

(92) and an integration time step of 20 fs. Electrostatic interactions were

calculated using the reaction-field scheme, and a cutoff of 1.1 nm for

both the electrostatic and van der Waals interactions was used.

We followed the minimization and equilibration protocol of CHARMM-

GUI previously used in our lab on analogous systems (93):

1. Minimization:

a. 2.5 � 105 steps of steepest descent minimization with a soft-core poten-

tial on Lennard-Jones and Coulomb interactions

b. 2.5 � 104 steps of steepest descent minimization.

2. The equilibration is carried out in NPT ensemble using the Berendsen

barostat (93) (reference pressure 1 bar, coupling constant 5 ps, and

compressibility 3 � 10�4 bar�1) and the velocity rescale thermostat

(94) (reference temperature 310 K, coupling constant 1 ps). The proced-

ure is split into five simulation steps:

a. 5 � 105 steps (time step 0.002 ps, trajectory length 1000 ps) with posi-

tion restraint on the headgroups (200 kJ/mol/nm2) and the protein

(1000 kJ/mol/nm2);
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b. 2 � 105 steps (time step 0.005 ps, trajectory length 1000 ps) with posi-

tion restraint on the headgroups (100 kJ/mol/nm2) and the protein

(500 kJ/mol/nm2);

c. 1 � 106 steps (time step 0.010 ps, trajectory length 10,000 ps) with po-

sition restraint on the headgroups (50 kJ/mol/nm2) and the protein

(250 kJ/mol/nm2);

d. 5 � 105 steps (time step 0.015 ps, trajectory length 7500 ps) with posi-

tion restraint on the headgroups (20 kJ/mol/nm2) and the protein (100 kJ/

mol/nm2); and

e. 5 � 105 steps (time step 0.020 ps, trajectory length 7500 ps) with posi-

tion restraint on the headgroups (10 kJ/mol/nm2) and the protein (50 kJ/

mol/nm2).

Three production runswere carriedout in the isothermal–isobaric ensemble

(NPT) using the Parrinello-Rahman barostat (96) (reference pressure 1 bar,

coupling constant 15 ps, compressibility 3 � 10�4 bar�1) and the velocity

rescale thermostat (95) (reference temperature 310 K, coupling constant

1 ps). Different sampling times were used to fully resolve the different dynam-

ical regimes (see Table 6). From these simulations, we extracted the protein’s

center-of-mass trajectories. The lateral MSD of the center of mass was calcu-

lated through the GROMACS tool analyze with the flag -msd. The maximal

time lag considered corresponds to 10% of the trajectory length.

To give an idea of the computational effort, a 10-ms-long trajectory car-

ried out on a 48-core machine (Intel Xeon(R) CPU E5-2687W v4) requires

4 days (i.e., 2.5 ms/day).
FIGURE 9 One-dimensional and two-dimen-

sional marginal distributions for model M1. The

highlighted area below the one-dimensional mar-

ginal distributions corresponds to 95%. The ellipses

in the two-dimensional marginal distributions corre-

spond to 68 and 95% confidence regions. The

reduced ~c2 is 1.02. To see this figure in color, go on-

line.
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APPENDIX C: DATA ANALYSIS

To evaluate best-fit values of the model parameters and their uncertainties,

we used a Bayesian approach with a flat (uninformative) prior distribution

for the parameters (72), i.e., all the parameter values are assumed to be

equally probable before analyzing the data.

In accordance with Bayes’s theorem, the posterior distribution of a

model described by the parameters q, given the measured data d, reads

PðqjdÞ ¼ LðdjqÞPðqÞ
EðdÞ ; (37)

where

LðdjqÞ ¼ 1

Z
e�c2=2 ¼ 1

Z
exp

"
� 1

2

XN
i¼ 1

�
mðq; iÞ � di

si

�2
#
;

(38)

is the likelihood of the MSD data d ¼ {di}, given the MSD model m(q, i)

calculated for the parameters q, with i being the index running over the points

of the data set of size N and si the error of the data. Z is a normalization con-

stant that guarantees that
R LðdjqÞd5q ¼ 1. The evidence of the data, E(d),

amounts to a normalization constant whose value is fixed, and P(q) is the

prior distribution of parameters, which is assumed to be uniform (72).

Toobtain an accurate estimation of the subdiffusive-to-Brownian dynamics

crossover, manymicroscopic fluctuationsmust be observed. Thus, the relative

error on the observed MSD has been estimated as the reciprocal of the square

root of the number of observed fluctuations and so as (t*/To)
1/2, where t* is the

characteristic timeof the fullyBrowniandynamics recovering,�400ns, andTo
is the observation time (i.e., the largest trajectory length).

The posterior distribution of the model is sampled over a regular grid of

the parameter space:

M1: us ˛ [0.6, 1.4] ps�1, up ˛ [408, 500] ps�1, t ˛ [7000, 20,000] ps, l

˛ [0.4, 1.0], and d ˛ [0.51, 1.5]. Number (#) of grid points:

#us ¼ 17, #up ¼ 11, #t ¼ 14, #l ¼ 7, #d ¼ 11; and

M2: us˛ [0.7, 1.3] ps�1, up˛ [409.5, 491.4] ps�1, t˛ [10,000, 17,000]

ps, and l (¼ n) ˛ [0.68, 0.76]. Number (#) of grid points:#us
¼ 25,

#up
¼ 25, #t ¼ 36, #l ¼ 17.

The expectation value of each parameter is estimated by the maximum

of the one-dimensional marginalized posterior distribution, i.e., after

marginalizing P over all but one parameter in turn (Fig. 3 for model M2

and Fig. 9 for model M1). The parameters confidence intervals correspond

to the 95% of the area below the one-dimensional marginalized posterior

distribution starting from the maximum. The best-fit parameters are sum-

marized in Table 2 for model M2 and Table 7 for model M1. To estimate

the correlations between the parameters of the model, the two-dimensional

marginal distribution for each pair of parameters (obtained by marginal-

izing over n � 2 parameters, where n is the number of free parameters)

is calculated as well (Fig. 3 for model M2 and Fig. 9 for model M1).
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