000897210 001__ 897210
000897210 005__ 20240610120658.0
000897210 0247_ $$2doi$$a10.1140/epja/s10050-021-00522-8
000897210 0247_ $$2ISSN$$a1434-6001
000897210 0247_ $$2ISSN$$a1434-601X
000897210 0247_ $$2Handle$$a2128/28845
000897210 0247_ $$2altmetric$$aaltmetric:101685840
000897210 0247_ $$2WOS$$aWOS:000669211800001
000897210 037__ $$aFZJ-2021-03676
000897210 082__ $$a530
000897210 1001_ $$0P:(DE-Juel1)168554$$aLe, Hoai$$b0$$eCorresponding author
000897210 245__ $$aS-shell $\varLambda \varLambda$ hypernuclei based on chiral interactions
000897210 260__ $$aHeidelberg$$bSpringer$$c2021
000897210 3367_ $$2DRIVER$$aarticle
000897210 3367_ $$2DataCite$$aOutput Types/Journal article
000897210 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635237573_32551
000897210 3367_ $$2BibTeX$$aARTICLE
000897210 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897210 3367_ $$00$$2EndNote$$aJournal Article
000897210 520__ $$aWe generalize the Jacobi no-core shell model (J-NCSM) to study double-strangeness hypernuclei. All particle conversions in the strangeness S=−1,−2 sectors are explicitly taken into account. In two-body space, such transitions may lead to the coupling between states of identical particles and of non-identical ones. Therefore, a careful consideration is required when determining the combinatorial factors that connect the many-body potential matrix elements and the free-space two-body potentials. Using second quantization, we systematically derive the combinatorial factors in question for S=0,−1,−2 sectors. As a first application, we use the J-NCSM to investigate ΛΛ s-shell hypernuclei based on hyperon-hyperon (YY) potentials derived within chiral effective field theory at leading order (LO) and up to next-to-leading order (NLO). We find that the LO potential overbinds 6ΛΛHe while the prediction of the NLO interaction is close to experiment. Both interactions also yield a bound state for 5ΛΛHe. The 4ΛΛH system is predicted to be unbound.
000897210 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000897210 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000897210 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897210 7001_ $$0P:(DE-Juel1)131179$$aHaidenbauer, Johann$$b1$$ufzj
000897210 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b2$$ufzj
000897210 7001_ $$0P:(DE-Juel1)131273$$aNogga, Andreas$$b3$$ufzj
000897210 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-021-00522-8$$gVol. 57, no. 7, p. 217$$n7$$p217$$tThe European physical journal / A$$v57$$x1434-601X$$y2021
000897210 8564_ $$uhttps://juser.fz-juelich.de/record/897210/files/Le2021_Article_S-shellVarLambdaVarLambda%CE%9B%CE%9BHyp-1.pdf$$yOpenAccess
000897210 8767_ $$d2021-07-02$$eHybrid-OA$$jDEAL
000897210 909CO $$ooai:juser.fz-juelich.de:897210$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access
000897210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168554$$aForschungszentrum Jülich$$b0$$kFZJ
000897210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131179$$aForschungszentrum Jülich$$b1$$kFZJ
000897210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b2$$kFZJ
000897210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131273$$aForschungszentrum Jülich$$b3$$kFZJ
000897210 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000897210 9141_ $$y2021
000897210 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000897210 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897210 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2019$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000897210 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897210 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000897210 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000897210 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000897210 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000897210 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000897210 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000897210 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000897210 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000897210 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000897210 9801_ $$aFullTexts
000897210 980__ $$ajournal
000897210 980__ $$aVDB
000897210 980__ $$aUNRESTRICTED
000897210 980__ $$aI:(DE-Juel1)IAS-4-20090406
000897210 980__ $$aI:(DE-Juel1)IKP-3-20111104
000897210 980__ $$aAPC
000897210 981__ $$aI:(DE-Juel1)IAS-4-20090406