001     897221
005     20211206142025.0
024 7 _ |a 10.1063/5.0047571
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 1527-2400
|2 ISSN
024 7 _ |a 2128/28713
|2 Handle
024 7 _ |a altmetric:100000192
|2 altmetric
024 7 _ |a 34243265
|2 pmid
024 7 _ |a WOS:000646353400009
|2 WOS
037 _ _ |a FZJ-2021-03683
082 _ _ |a 620
100 1 _ |a Hennen, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Current-limiting amplifier for high speed measurement of resistive switching data
260 _ _ |a [S.l.]
|c 2021
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638775498_10942
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resistive switching devices, important for emerging memory and neuromorphic applications, face significant challenges related to the control of delicate filamentary states in the oxide material. As a device switches, its rapid conductivity change is involved in a positive feedback process that would lead to runaway destruction of the cell without current, voltage, or energy limitation. Typically, cells are directly patterned on MOS transistors to limit the current, but this approach is very restrictive as the necessary integration limits the materials available as well as the fabrication cycle time. In this article, we propose an external circuit to cycle resistive memory cells, capturing the full transfer curves while driving the cells in a way that suppresses runaway transitions. Using this circuit, we demonstrate the acquisition of 105 I, V loops per second without using on-wafer current limiting transistors. This setup brings voltage sweeping measurements to a relevant timescale for applications and enables many new experimental possibilities for device evaluation in a statistical context.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wichmann, E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Elias, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lille, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mosendz, O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
700 1 _ |a Wouters, D. J.
|0 0000-0002-6766-8553
|b 6
700 1 _ |a Bedau, D.
|0 0000-0002-2141-3512
|b 7
773 _ _ |a 10.1063/5.0047571
|g Vol. 92, no. 5, p. 054701 -
|0 PERI:(DE-600)1472905-2
|n 5
|p 054701 -
|t Review of scientific instruments
|v 92
|y 2021
|x 1089-7623
856 4 _ |u https://juser.fz-juelich.de/record/897221/files/2102.05770.pdf
|y Published on 2021-05-03. Available in OpenAccess from 2022-05-03.
856 4 _ |u https://juser.fz-juelich.de/record/897221/files/5.0047571.pdf
|y Published on 2021-05-03. Available in OpenAccess from 2022-05-03.
909 C O |o oai:juser.fz-juelich.de:897221
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2019
|d 2021-02-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21