000897245 001__ 897245
000897245 005__ 20230303093547.0
000897245 0247_ $$2doi$$a10.1111/mmi.14813
000897245 0247_ $$2ISSN$$a0950-382X
000897245 0247_ $$2ISSN$$a1365-2958
000897245 0247_ $$2Handle$$a2128/29183
000897245 0247_ $$2altmetric$$aaltmetric:113727491
000897245 0247_ $$2pmid$$apmid:34536319
000897245 0247_ $$2WOS$$aWOS:000701241500001
000897245 037__ $$aFZJ-2021-03707
000897245 082__ $$a570
000897245 1001_ $$0P:(DE-Juel1)174336$$aKever, Larissa$$b0
000897245 245__ $$aIdentification of Gip as a novel phage‐encoded gyrase inhibitor protein of Corynebacterium glutamicum
000897245 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2021
000897245 3367_ $$2DRIVER$$aarticle
000897245 3367_ $$2DataCite$$aOutput Types/Journal article
000897245 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637935290_26610
000897245 3367_ $$2BibTeX$$aARTICLE
000897245 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897245 3367_ $$00$$2EndNote$$aJournal Article
000897245 500__ $$aBiotechnologie 1
000897245 520__ $$aBy targeting key regulatory hubs of their host, bacteriophages represent a powerful source for the identification of novel antimicrobial proteins. Here, a screening of small cytoplasmic proteins encoded by the CGP3 prophage of Corynebacterium glutamicum resulted in the identification of the gyrase-inhibiting protein Cg1978, termed Gip. Pull-down assays and surface plasmon resonance revealed a direct interaction of Gip with the gyrase subunit A (GyrA). The inhibitory activity of Gip was shown to be specific to the DNA gyrase of its bacterial host C. glutamicum. Overproduction of Gip in C. glutamicum resulted in a severe growth defect as well as an induction of the SOS response. Furthermore, reporter assays revealed an RecA-independent induction of the cryptic CGP3 prophage, most likely caused by topological alterations. Overexpression of gip was counteracted by an increased expression of gyrAB and a reduction of topA expression at the same time, reflecting the homeostatic control of DNA topology. We postulate that the prophage-encoded Gip protein plays a role in modulating gyrase activity to enable efficient phage DNA replication. A detailed elucidation of the mechanism of action will provide novel directions for the design of drugs targeting DNA gyrase.
000897245 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897245 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897245 7001_ $$0P:(DE-Juel1)165889$$aHünnefeld, Max$$b1
000897245 7001_ $$0P:(DE-HGF)0$$aBrehm, Jannis$$b2
000897245 7001_ $$0P:(DE-HGF)0$$aHeermann, Ralf$$b3
000897245 7001_ $$0P:(DE-Juel1)138503$$aFrunzke, Julia$$b4$$eCorresponding author
000897245 773__ $$0PERI:(DE-600)1501537-3$$a10.1111/mmi.14813$$gp. mmi.14813$$n5$$p1268 - 1280$$tMolecular microbiology$$v116$$x1365-2958$$y2021
000897245 8564_ $$uhttps://juser.fz-juelich.de/record/897245/files/mmi.14813.pdf$$yOpenAccess
000897245 8767_ $$d2021-09-29$$eHybrid-OA$$jDEAL
000897245 909CO $$ooai:juser.fz-juelich.de:897245$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000897245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174336$$aForschungszentrum Jülich$$b0$$kFZJ
000897245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165889$$aForschungszentrum Jülich$$b1$$kFZJ
000897245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138503$$aForschungszentrum Jülich$$b4$$kFZJ
000897245 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897245 9141_ $$y2021
000897245 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL MICROBIOL : 2019$$d2021-02-03
000897245 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000897245 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-03$$wger
000897245 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897245 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000897245 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000897245 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000897245 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000897245 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000897245 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000897245 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000897245 920__ $$lyes
000897245 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000897245 980__ $$ajournal
000897245 980__ $$aVDB
000897245 980__ $$aUNRESTRICTED
000897245 980__ $$aI:(DE-Juel1)IBG-1-20101118
000897245 980__ $$aAPC
000897245 9801_ $$aAPC
000897245 9801_ $$aFullTexts