000897249 001__ 897249
000897249 005__ 20230522110535.0
000897249 0247_ $$2doi$$a10.1002/qute.202100083
000897249 0247_ $$2altmetric$$aaltmetric:115888828
000897249 0247_ $$2WOS$$aWOS:000695620900001
000897249 0247_ $$2Handle$$a2128/31298
000897249 037__ $$aFZJ-2021-03711
000897249 082__ $$a530
000897249 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0$$eCorresponding author
000897249 245__ $$aLifting the Spin‐Momentum Locking in Ultra‐Thin Topological Insulator Films
000897249 260__ $$aWeinheim$$bWiley-VCH Verlag$$c2021
000897249 3367_ $$2DRIVER$$aarticle
000897249 3367_ $$2DataCite$$aOutput Types/Journal article
000897249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636444216_22225
000897249 3367_ $$2BibTeX$$aARTICLE
000897249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897249 3367_ $$00$$2EndNote$$aJournal Article
000897249 520__ $$a3D topological insulators are known to carry 2D Dirac-like topological surface states in which spin-momentum locking prohibits backscattering. When thinned down to a few nanometers, the hybridization between the topological surface states at the top and bottom surfaces results in a topological quantum phase transition, which can lead to the emergence of a quantum spin Hall phase. Here, the thickness-dependent transport properties across the quantum phase transition are studied on the example of (Bi0.16Sb0.84.)2Te3 films, with a four-tip scanning tunneling microscope. The findings reveal an exponential drop of the conductivity below the critical thickness. The steepness of this drop indicates the presence of spin-conserving backscattering between the top and bottom surface states, effectively lifting the spin-momentum locking and resulting in the opening of a gap at the Dirac point. The experiments provide a crucial step toward the detection of quantum spin Hall states in transport measurements.
000897249 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000897249 536__ $$0G:(GEPRIS)443416235$$aDFG project 443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie $$c443416235$$x1
000897249 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897249 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b1
000897249 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b2
000897249 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b3
000897249 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b4
000897249 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b5
000897249 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000897249 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b7
000897249 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8
000897249 773__ $$0PERI:(DE-600)2885525-5$$a10.1002/qute.202100083$$gp. 2100083 -$$n11$$p2100083 -$$tAdvanced quantum technologies$$v4$$x2511-9044$$y2021
000897249 8564_ $$uhttps://juser.fz-juelich.de/record/897249/files/qute.202100083.pdf$$yOpenAccess
000897249 8767_ $$d2021-09-29$$eHybrid-OA$$jDEAL
000897249 909CO $$ooai:juser.fz-juelich.de:897249$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168208$$aForschungszentrum Jülich$$b0$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b1$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b2$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b3$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b4$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b5$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b7$$kFZJ
000897249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000897249 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000897249 9141_ $$y2021
000897249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000897249 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897249 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-25$$wger
000897249 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-25
000897249 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897249 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-08-25
000897249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000897249 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000897249 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000897249 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000897249 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000897249 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000897249 980__ $$ajournal
000897249 980__ $$aVDB
000897249 980__ $$aUNRESTRICTED
000897249 980__ $$aI:(DE-Juel1)PGI-3-20110106
000897249 980__ $$aAPC
000897249 9801_ $$aAPC
000897249 9801_ $$aFullTexts