Home > Publications database > Lifting the Spin‐Momentum Locking in Ultra‐Thin Topological Insulator Films > print |
001 | 897249 | ||
005 | 20230522110535.0 | ||
024 | 7 | _ | |a 10.1002/qute.202100083 |2 doi |
024 | 7 | _ | |a altmetric:115888828 |2 altmetric |
024 | 7 | _ | |a WOS:000695620900001 |2 WOS |
024 | 7 | _ | |a 2128/31298 |2 Handle |
037 | _ | _ | |a FZJ-2021-03711 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Leis, Arthur |0 P:(DE-Juel1)168208 |b 0 |e Corresponding author |
245 | _ | _ | |a Lifting the Spin‐Momentum Locking in Ultra‐Thin Topological Insulator Films |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH Verlag |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1636444216_22225 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a 3D topological insulators are known to carry 2D Dirac-like topological surface states in which spin-momentum locking prohibits backscattering. When thinned down to a few nanometers, the hybridization between the topological surface states at the top and bottom surfaces results in a topological quantum phase transition, which can lead to the emergence of a quantum spin Hall phase. Here, the thickness-dependent transport properties across the quantum phase transition are studied on the example of (Bi0.16Sb0.84.)2Te3 films, with a four-tip scanning tunneling microscope. The findings reveal an exponential drop of the conductivity below the critical thickness. The steepness of this drop indicates the presence of spin-conserving backscattering between the top and bottom surface states, effectively lifting the spin-momentum locking and resulting in the opening of a gap at the Dirac point. The experiments provide a crucial step toward the detection of quantum spin Hall states in transport measurements. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie |0 G:(GEPRIS)443416235 |c 443416235 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Schleenvoigt, Michael |0 P:(DE-Juel1)171405 |b 1 |
700 | 1 | _ | |a Cherepanov, Vasily |0 P:(DE-Juel1)128762 |b 2 |
700 | 1 | _ | |a Lüpke, Felix |0 P:(DE-Juel1)162163 |b 3 |
700 | 1 | _ | |a Schüffelgen, Peter |0 P:(DE-Juel1)165984 |b 4 |
700 | 1 | _ | |a Mussler, Gregor |0 P:(DE-Juel1)128617 |b 5 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 6 |
700 | 1 | _ | |a Voigtländer, Bert |0 P:(DE-Juel1)128794 |b 7 |
700 | 1 | _ | |a Tautz, F. Stefan |0 P:(DE-Juel1)128791 |b 8 |
773 | _ | _ | |a 10.1002/qute.202100083 |g p. 2100083 - |0 PERI:(DE-600)2885525-5 |n 11 |p 2100083 - |t Advanced quantum technologies |v 4 |y 2021 |x 2511-9044 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/897249/files/qute.202100083.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:897249 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171405 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)128762 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)162163 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165984 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128617 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128791 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-08-25 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2020-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-25 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|