000897250 001__ 897250
000897250 005__ 20220930130327.0
000897250 0247_ $$2doi$$a10.1002/bit.27909
000897250 0247_ $$2ISSN$$a0006-3592
000897250 0247_ $$2ISSN$$a0368-1467
000897250 0247_ $$2ISSN$$a1097-0290
000897250 0247_ $$2ISSN$$a1547-173X
000897250 0247_ $$2Handle$$a2128/29116
000897250 0247_ $$2pmid$$a34343343
000897250 0247_ $$2WOS$$aWOS:000686279100001
000897250 037__ $$aFZJ-2021-03712
000897250 082__ $$a570
000897250 1001_ $$0P:(DE-Juel1)169979$$aLabib, Mohamed$$b0
000897250 245__ $$aMetabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum
000897250 260__ $$aNew York, NY [u.a.]$$bWiley$$c2021
000897250 3367_ $$2DRIVER$$aarticle
000897250 3367_ $$2DataCite$$aOutput Types/Journal article
000897250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637678703_30790
000897250 3367_ $$2BibTeX$$aARTICLE
000897250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897250 3367_ $$00$$2EndNote$$aJournal Article
000897250 520__ $$a3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 ± 12.1 mM (9.6 ± 1.9 g L−1) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 ± 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.
000897250 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897250 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897250 7001_ $$0P:(DE-HGF)0$$aGörtz, Jonas$$b1
000897250 7001_ $$0P:(DE-Juel1)166290$$aBrüsseler, Christian$$b2
000897250 7001_ $$0P:(DE-Juel1)157678$$aKallscheuer, Nicolai$$b3
000897250 7001_ $$0P:(DE-Juel1)129023$$aGätgens, Jochem$$b4$$ufzj
000897250 7001_ $$00000-0001-6551-5695$$aJupke, Andreas$$b5
000897250 7001_ $$0P:(DE-Juel1)144031$$aMarienhagen, Jan$$b6
000897250 7001_ $$0P:(DE-Juel1)129050$$aNoack, Stephan$$b7$$eCorresponding author
000897250 773__ $$0PERI:(DE-600)1480809-2$$a10.1002/bit.27909$$gp. bit.27909$$n11$$pbit.27909$$tBiotechnology & bioengineering$$v118$$x1097-0290$$y2021
000897250 8564_ $$uhttps://juser.fz-juelich.de/record/897250/files/bit.27909-1.pdf$$yOpenAccess
000897250 8767_ $$d2021-09-29$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000897250 909CO $$ooai:juser.fz-juelich.de:897250$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000897250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169979$$aForschungszentrum Jülich$$b0$$kFZJ
000897250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129023$$aForschungszentrum Jülich$$b4$$kFZJ
000897250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144031$$aForschungszentrum Jülich$$b6$$kFZJ
000897250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129050$$aForschungszentrum Jülich$$b7$$kFZJ
000897250 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897250 9141_ $$y2021
000897250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000897250 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897250 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000897250 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOTECHNOL BIOENG : 2019$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000897250 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000897250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000897250 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000897250 980__ $$ajournal
000897250 980__ $$aVDB
000897250 980__ $$aUNRESTRICTED
000897250 980__ $$aI:(DE-Juel1)IBG-1-20101118
000897250 980__ $$aAPC
000897250 9801_ $$aAPC
000897250 9801_ $$aFullTexts