000897325 001__ 897325
000897325 005__ 20250701125919.0
000897325 0247_ $$2doi$$a10.1140/epjd/s10053-021-00268-4
000897325 0247_ $$2ISSN$$a1434-6060
000897325 0247_ $$2ISSN$$a1434-6079
000897325 0247_ $$2Handle$$a2128/28760
000897325 0247_ $$2WOS$$aWOS:000701695300001
000897325 037__ $$aFZJ-2021-03731
000897325 041__ $$aEnglish
000897325 082__ $$a530
000897325 1001_ $$0P:(DE-Juel1)131141$$aEngels, Ralf$$b0$$eCorresponding author
000897325 245__ $$aDirect observation of transitions between quantum states with energy differences below 10 neV employing a Sona unit
000897325 260__ $$aHeidelberg$$bSpringer$$c2021
000897325 3367_ $$2DRIVER$$aarticle
000897325 3367_ $$2DataCite$$aOutput Types/Journal article
000897325 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682678042_9361
000897325 3367_ $$2BibTeX$$aARTICLE
000897325 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897325 3367_ $$00$$2EndNote$$aJournal Article
000897325 520__ $$aThe direct access to atomic transitions between close by quantum states employing standard spectroscopic methods is often limited by the size of the necessary radio-frequency cavities. Here we report on a new tool for fundamental spectroscopy measurements that can overcome this shortcoming. For this, a Sona transition unit was used, i.e., two opposed solenoidal coils that provide an oscillating field in the rest frame of the through-going atomic beam. In this way, we were able to control the induced photon energy down to 10 neV or f∼ MHz. The tuneable parameter is the velocity of the atomic beam. For illustration of the method, we report a measurement of the hyperfine splitting energies between the substates with F=1 and m_F=−1,0,+1 of 2S_1/2 metastable hydrogen atoms as function of a magnetic field.
000897325 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0
000897325 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000897325 536__ $$0G:(DE-HGF)Athena-HGF_2019_2022$$aATHENA/HGF - ATHENA - Accelerator Technology Helmholtz Infrastructure (Athena-HGF_2019_2022)$$cAthena-HGF_2019_2022$$x2
000897325 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897325 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x0
000897325 65017 $$0V:(DE-MLZ)GC-2001-2016$$2V:(DE-HGF)$$aNuclei and Particles$$x0
000897325 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b1
000897325 7001_ $$0P:(DE-HGF)0$$aBuske, Paul$$b2
000897325 7001_ $$0P:(DE-HGF)0$$aGan, Yuchen$$b3
000897325 7001_ $$0P:(DE-Juel1)131170$$aGrigoryev, Kirill$$b4
000897325 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b5
000897325 7001_ $$0P:(DE-Juel1)176255$$aHuxold, Lukas$$b6
000897325 7001_ $$0P:(DE-Juel1)178627$$aKannis, Chrysovalantis$$b7
000897325 7001_ $$0P:(DE-Juel1)131234$$aLehrach, Andreas$$b8
000897325 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b9
000897325 7001_ $$0P:(DE-HGF)0$$aVerhoeven, Vincent$$b10
000897325 773__ $$0PERI:(DE-600)1459071-2$$a10.1140/epjd/s10053-021-00268-4$$gVol. 75, no. 9, p. 257$$n9$$p257$$tThe European physical journal / D$$v75$$x1434-6079$$y2021
000897325 8564_ $$uhttps://juser.fz-juelich.de/record/897325/files/Engels2021_Article_DirectObservationOfTransitions.pdf$$yOpenAccess
000897325 8767_ $$d2021-09-29$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000897325 909CO $$ooai:juser.fz-juelich.de:897325$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131141$$aForschungszentrum Jülich$$b0$$kFZJ
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b1$$kFZJ
000897325 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131170$$aForschungszentrum Jülich$$b4$$kFZJ
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b5$$kFZJ
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178627$$aForschungszentrum Jülich$$b7$$kFZJ
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b8$$kFZJ
000897325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b9$$kFZJ
000897325 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0
000897325 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000897325 9141_ $$y2021
000897325 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000897325 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000897325 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000897325 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000897325 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000897325 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897325 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000897325 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897325 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J D : 2019$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000897325 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000897325 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000897325 920__ $$lyes
000897325 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
000897325 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000897325 9201_ $$0I:(DE-Juel1)ZAT-20090406$$kZAT$$lZentralinstitut für Technologie$$x2
000897325 9201_ $$0I:(DE-82)080023_20140620$$kJARA-FAME$$lJARA-FAME$$x3
000897325 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x4
000897325 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x5
000897325 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x6
000897325 9801_ $$aAPC
000897325 9801_ $$aFullTexts
000897325 980__ $$ajournal
000897325 980__ $$aVDB
000897325 980__ $$aI:(DE-Juel1)IKP-2-20111104
000897325 980__ $$aI:(DE-Juel1)PGI-6-20110106
000897325 980__ $$aI:(DE-Juel1)ZAT-20090406
000897325 980__ $$aI:(DE-82)080023_20140620
000897325 980__ $$aI:(DE-Juel1)IAS-4-20090406
000897325 980__ $$aI:(DE-Juel1)IKP-4-20111104
000897325 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000897325 980__ $$aAPC
000897325 980__ $$aUNRESTRICTED
000897325 981__ $$aI:(DE-Juel1)ITE-20250108