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Abstract. The direct access to atomic transitions between close by quantum states employing standard
spectroscopic methods is often limited by the size of the necessary radio-frequency cavities. Here we report
on a new tool for fundamental spectroscopy measurements that can overcome this shortcoming. For this, a
Sona transition unit was used, i.e., two opposed solenoidal coils that provide an oscillating field in the rest
frame of the through-going atomic beam. In this way, we were able to control the induced photon energy
down to 10 neV or f ∼ MHz. The tuneable parameter is the velocity of the atomic beam. For illustration
of the method, we report a measurement of the hyperfine splitting energies between the substates with
F = 1 and mF = −1, 0, +1 of 2S1/2 metastable hydrogen atoms as function of a magnetic field.

1 Introduction

Nowadays, 2-photon spectroscopy [1] reaches a rela-
tive uncertainty of the spectral energies of 4.5 · 10−15

and allows, for example, a precise measurement of the
hyperfine-splitting energy of the 2S1/2 state of EHFS =
177.556860(16) MHz [2]. In parallel to the observa-
tion of transitions between energy levels with a dif-
ferent quantum number n, even transitions between
the substates with equal n at very small energies have
been measured successfully. Rabi used a Stern–Gerlach
magnet as polarizer for a through-going beam to
separate hydrogen atoms with different electron spins.
Then, radio-frequency (RF)-induced transitions at dif-
ferent magnetic fields exchanged the occupation num-
bers between hyperfine substates, and another Stern–
Gerlach magnet was used as analyzer to determine the
resonance frequency as a function of the magnetic field
to measure the energy difference between the substates
(see Fig. 1).

Most important was the discovery of the Lamb shift
by RF-induced transitions between the 2S1/2 and the
2P1/2 states of metastable hydrogen atoms passing an
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RF cavity, since it allows precision tests of QED. The
length l of such a cavity can be estimated from the
resonance frequency f ∼ 1 GHz, which determines the
wavelength λ that must be stored inside via c = λ · f ,
to l ∼ 0.3 m. With the skin effect of the wall material
taken into account, the cavity length is slightly reduced
to ∼ 0.2 m. Thus, measurements of even smaller tran-
sition energies are limited by the size of such cavities
that must ensure the overlap of the atomic trajectories
and the radio-frequency waves. Up to now the measure-
ment of the hyperfine-splitting energy of the 2S1/2 state
by Rothery and Hessels [3] with a cavity of about 1 m
length sets the limit with EHFS = 177.556785(29) MHz
∼ 7.34·10−7 eV, a similar precision as in 2-photon spec-
troscopy.

Here we report about a new, alternative method
to study directly radio frequencies in the MHz range,
respectively, energy differences of ΔE∼10−8 eV and
below. Instead of using an external source of radia-
tion, we use an atomic beam with the velocity v passing
through a properly chosen static magnetic field config-
uration (see Fig. 2) that defines due to its sinusoidal
oscillation in the rest frame of the through-going par-
ticles the wavelength λ. In this case, the time of flight
through the magnetic field Δt = λ/v determines the
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Fig. 1 The Breit–Rabi [4] diagram shows the relative bind-
ing energies of hyperfine substates as a function of an exter-
nal magnetic field B′. At low magnetic fields in the Zee-
man region of the metastable 2S1/2 state the energy differ-
ences between the substates with F = 1 and the projection
mF = +1, 0, −1 along an external field B′ are in the order
of 10−8 up to 10−7 eV. If an RF of f = 3.54 MHz corre-
sponding to an energy of 1.464 · 10−8 eV is applied, then
(multi-)photon-induced transitions (α2 ↔ α1: yellow lines,
β3 ↔ α2: red lines) are only possible at magnetic fields cor-
responding to energy differences between these substates of
ΔE = n · h · f

induced frequency f = 1/Δt = v/λ. Thus, the pho-
ton energy acting on an atom can be varied by chang-
ing the velocity v of the atoms. As a first application,
we present a measurement of hyperfine transitions of
metastable hydrogen atoms in the 2S1/2 state, where
these tiny energy differences occur naturally for easy-
to-generate external magnetic fields (see Fig. 1).

In the absence of angular momentum, the total spin
J = 1/2 of the 2S1/2 state is solely determined by the
electron spin. It couples with the nuclear spin I = 1/2
to F = J + I, which can thus be either 1 or 0.
For F = 1, three substates exist with the projection
mF = +1, 0,−1 onto the external magnetic field direc-
tion as quantization axis denoted as α1, α2 and β3,
respectively. The F = 0,mF = 0 substate is called β4.
Starting with a beam of atoms in a single hyperfine
substate, their interaction with photons changing the
occupation numbers was studied in detail in our exper-
iment.

2 Experimental Setup and Results

The experiment is based on a Lamb-shift polarimeter
that is frequently used to measure the polarization of
hydrogen and deuterium atoms [5], molecules [6] and
their ions. In the ‘polarizer’, molecular hydrogen is ion-
ized in an electron-impact ionizer, and the resulting
protons and H2 ions are accelerated to kinetic ener-
gies Ep between 1 and 2 keV (see Fig. 2). A Wien
filter is used as velocity filter, which allows to deter-
mine the relative uncertainty of the velocity down to

ΔvH ∼ 10−3 in the actual setup. Smaller apertures
can decrease the uncertainty further, but we will limit
the beam intensity and, therefore, the statistical uncer-
tainty of the results. In parallel, the Wien filter sepa-
rates H+

2 ions from protons before they reach the cesium
cell. Here, by charge exchange with cesium vapor that
is obtained by heating a small amount of cesium at
the bottom of the cell, metastable hydrogen atoms in
all four hyperfine substates are produced. Afterward, a
spinfilter quenches all metastable atoms into the ground
state and allows at special resonance conditions only
metastable atoms in the states α1 or α2 to be trans-
mitted [7]. The next component is the Sona-transition
unit [8]. It consists of two 10-cm-long solenoids provid-
ing opposing longitudinal magnetic fields with a zero
crossing between the coils. If atoms in the state α1,
i.e., electron and proton spin parallel to the exter-
nal magnetic field, leave the spinfilter, the inversion of
the external field direction in the atomic rest frame
is much faster than the Larmor precession of F . In
this non-adiabatic case, the spins keep their direction
along the beam axis z, whereas the magnetic field is
inverted. For this to happen, the magnetic field gradi-
ent around the zero-crossing needs to fulfill the require-
ment [8]

dBz

dz
<

8 vH me

e r2
, (1)

where vH ≈ √
2Ep/mp denotes the velocity of the

hydrogen atoms, mp = 1.672 · 10−27 kg the proton
mass, me = 9.109 · 10−31 kg and e = 1.602 · 10−19 C
the electron mass and the unit charge, respectively,
and r the beam radius. This requirement can be real-
ized by a proper choice of B, the beam energy Ep

and the distance between the Sona coils. For exam-
ple, a kinetic proton energy of 1.28 keV corresponds
to a velocity of the hydrogen atoms vH = 4.93 ·
105 m/s. For a beam radius of r = 1 cm, the
gradient must be below dBz/dz < 2.2 mT/cm or
a current of 5 A in our coils, if their distance is
60 mm.

With such a setting, one expects that all atoms in
state α1 are transferred into β3 and vice versa, i.e., mF

is changed from +1 into −1. This very efficient method
of changing occupation numbers is also used in polar-
ized ion sources of the Lamb-shift type [9] and at opti-
cally pumped ion sources [10].

Behind the Sona transition unit, another spinfilter
is used to analyze the amount of metastable atoms
in the α substates. For example, if the first spinfilter
is set to transmit only atoms in the substate α1, the
Sona transition unit transfers them into β3 and none
of them is transmitted through the second spinfilter.
If the Sona settings transfer some atoms back into the
α1 or α2 substate, they can pass the second spinfilter
at the corresponding resonant conditions. Afterward,
these atoms reach the quenching chamber where they
are quenched into the ground state by the Stark effect
in a strong electric field [11]. The produced Lyman-
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(a)

(b) (c)

Fig. 2 Sketch of the experimental setup (a) and the calculated (line) and measured (dots) longitudinal (b) and radial (c)
magnetic fields at a distance of ρ = 3 mm from the beam axis z for different currents in the coils of the Sona transition
unit and a distance of 60 mm between the coils, which corresponds to a distance between the center of the Sona coils
of 160 mm. The calibration of the maximum magnetic field Bmax in the center of the Sona coils on the current I is
Bmax(I) = 3.37 mT/A · I + 0.011 mT. Additional shielding at both ends of the Sona transition is the reason for the
deviation of measured and calculated magnetic fields

α photons are registered as a function of the current
through the Sona coils. The blue lines in Figs. 3 and
4 show the measured occupation numbers for the α1

and α2 states. Thus, we find that for certain mag-
netic flux densities atoms in substates other than β3

appear in the second spinfilter contrary to naive expec-
tations [8].

During these first measurements, we used an electron-
impact ionizer that was fed with molecular hydrogen.
Thus, mainly H+

2 molecular ions were produced and
only less than 10% of all ions were protons that could
pass the Wien filter for further use. This leads to a pro-
ton beam of less than 100 nA, 109 hydrogen atoms/s
in the metastable hydrogen substate α1 behind the
first spinfilter and about 105 metastable atoms/s in the
quenching chamber to produce a photomultiplier sig-
nal of a few mV on the oscilloscope for a typical reso-
nance.

We note that a similar effect has been reported for
a beam of hydrogen atoms in both α substates of the
metastable 2S1/2 state [12–14] and even of the 1S1/2

ground state [15,16] before, but the occupation num-
bers of single substates have not been investigated in
detail up to now.

3 Theoretical description

Since the individual atoms move on straight lines with a
constant velocity through the apparatus, we can equiva-
lently describe them in their rest frame system as expe-
riencing a magnetic field that varies in time. The cor-
responding Hamilton operator describing the hyperfine
substates of a hydrogen atom in an external magnetic
field B is [17,18]:

H(t) = ΔEHFS I · J − μatom · B(t)
= ΔEHFS I · J − (gJμBJ + gpμKI) · B(t)
= H0 + V (t), (2)

where H0 denotes the first, time-independent term.
Here gJ = −2.001 and gp = 5.586 denote the g-
factors of the electron and the proton, respectively, and
μK = eh/(4πmp) = 1.41 · 10−26 J/T is the nuclear
magnetron.

The only tunable quantity is the magnetic field B(t).
Its time dependence can be found directly from B(z),
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Fig. 3 Measured relative amount of metastable hydrogen
atoms in the hyper-fine substate α1 behind the Sona transi-
tion unit (blue) as a function of the effective magnetic field
B′ up to 5 mT, the current in the Sona coils and the corre-
sponding max. magnetic field Bmax at the center of the Sona
coils. The small offsets between magnetic fields and the cur-
rent stem from unshielded magnetic stray fields in the inter-
action region. In addition, the prediction of the peak centers
due to the Breit–Rabi diagram (red dashed lines) and the
solution of the time-dependent Schrödinger equation (yel-
low) for the measured magnetic field distribution B(z) and
the velocity vH = 4.93 · 105 m/s (Ebeam = 1.28 keV) are
presented

Fig. 4 The measured relative amount of metastable hydro-
gen atoms in the hyperfine substate α2 behind the Sona
transition unit (blue) as a function of the effective magnetic
field B′ up to 3.2 mT, the current in the Sona coils and the
corresponding max. magnetic field Bmax in the center of the
Sona coils. Other details are found in the caption of Fig. 3

i.e., the dependence of the magnetic field along the
beam direction z, due to the motion of the hydrogen

atoms with velocity vH (see Fig. 2). The radial compo-
nent Brad of the flux density of a solenoid at a radius ρ
can be calculated from the gradient of the longitudinal
field Bz via

Brad(z, ρ) = −dBz

dz
· ρ

2
(3)

employing ∇ · B = 0 and, of course, can also be
measured directly. Note that only Brad can induce
the observed transitions, since both terms Jz · Bz

and Iz · Bz are diagonal in the basis used. Using the
time-dependent Schrödinger equation and the mea-
sured Brad(z, ρ) with the Hamiltonian from above and
expanding the solution in terms of the unperturbed
wave functions (found from solving the time-indepen-
dent Schrödinger equation with V (t) = 0),

Ψ(x, t) =
4∑

n=1

cn(t)e−iEnt/�|n〉 with H0|n〉 = En|n〉

one finds for the expansion parameters the equation

i�
dck(t)

dt
=

4∑

n=1

cn(t)e
−i(En−Ek)t

� 〈k|V (t)|n〉,

where the sum runs over the four basis states of the
2S level. The only approximation applied to derive this
differential equation is that all states not belonging to
the 2S multiplet are neglected, which is well justified
given the large energy differences. Especially transi-
tions into the 1S state are just perturbative and can
be neglected, because the lifetime of the metastable
atoms τ = 0.14 s is five orders longer than the time-
of-flight through the complete apparatus. For the dis-
cussion below, it is important to note that the matrix
element 〈k|V (t)|n〉 only yields a contribution for quan-
tum numbers mF differing by ±1.

This equation may be solved by discretizing in the
time variable for the known magnetic field Brad(z, ρ).
To find the relative occupation numbers for the differ-
ent substates, one needs to integrate the resulting wave
functions over the beam profile, here assumed to be of
Gaussian shape with a spread σ = 5 mm. In Fig. 3 and
Fig. 4, the result for the occupation number of state
α1 and α2, respectively, is compared to the experimen-
tal data. In first order, the radial beam density profile
does not affect the peak positions at the correspond-
ing magnetic fields, but influences their amplitudes and
shapes. The reason is that the RF is stable, but its
power, respectively the photon density, is growing with
larger ρ. Thus, assuming other radial beam distribu-
tions in the simulations, the relative intensities of the
single resonances are modified, but the peak positions
stay. During the experiment, the radial beam density
can be manipulated by different focusing and leads to a
deviation between the predictions of an ideal beam dis-
tribution and measured data like shown in the example
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of Fig. 4. Nevertheless, the positions of the maxima as
a function of the magnetic field are still unchanged.

It is intriguing that the locations of the peaks shown
in Figs. 3 and 4 can be straightforwardly understood
in a particle picture. It is the general understanding
that during their passage from one Sona solenoid to the
other all atoms are transferred from state α1 into β3.
However, they can also absorb a photon to be excited
into state α2 and a second photon to reach state α1

again. These photons are induced by the oscillation of
the radial magnetic field seen by the metastable hydro-
gen atom in its rest frame during the flight from one
Sona coil to the other. Such transitions are by far most
efficient, when

ΔE = n · h · f (4)

holds, where n denotes an integer number. Therefore,
every time the averaged magnetic field B′ inside the
solenoids corresponds to an energy difference between
the states α1 and α2 that equals an integer multiple of
h ·f (see Fig. 1), this transition can appear as a peak in
a scan like the one shown in Figs. 3 or 4. In other words,
the transitions are induced by multi-photon absorption.
The transition from α2 into α1 is only possible, if the
state α2 has been populated through a β3 ↔ α2 tran-
sition before, for otherwise the transition matrix ele-
ment vanishes. Since the energy differences between the
states β3 ↔ α2 and α2 ↔ α1 are not equal for the same
magnetic field, the resonance shapes are a convolution
of both transitions. The corresponding deformations of
the single resonances are obvious especially in Fig. 3 for
the measured data and the calculation. When the sec-
ond spinfilter allows only metastable hydrogen atoms in
the substate α2 to be transmitted, the transitions from
β3 → α2 will dominate the occupation numbers of the
substate α2 and the transitions α2 → α1 are responsi-
ble for an additional deformation of the resonances (see
Fig. 4).

As long as the relative velocity distribution of the
metastable atoms in the beam is below ±2%, only an
increased resonance width appears, whereas the peak
positions stay fixed, since their locations are determined
by the resonance condition. In case of even broader
beam velocity profiles, the deformations are shaping the
resonances more and more, and this can, since the res-
onances overlap, lead to a shift of the peak centers to
higher or lower magnetic fields.

4 Results

The energy of the exchanged photons can be deter-
mined by different methods:

(i) The radial magnetic field Brad(z, ρ) can be trans-
formed with the known beam velocity vH = dz/dt into
B(t, ρ). Thus, a Fourier analysis of the radial RF seen
by the atom during its time-of-flight Δt through the
Sona coils yields for vH = 4.93·105 m/s a first harmonic

frequency of f0 = 1.76 MHz and a second harmonic at
f1 = 3.52 MHz. Only the second harmonic corresponds
to a full oscillation between the Sona coils, i.e., a pho-
ton, and can induce RF transitions between the hyper-
fine substates. All harmonic frequencies depend only on
the velocity of the hydrogen atom vH and the geome-
try of the coils and are independent of an increasing
longitudinal magnetic field strength that changes the
effective magnetic field strength B′ and the amplitude
of the oscillation, i.e., the number of photons. The corre-
sponding wavelength of the second harmonic frequency
f1 can be calculated from the equation

vH = λ · f1 (5)

and is λ = 140 mm in the example of Fig. 2. Thus, the
static radial magnetic field component in the labora-
tory system induces an oscillating radial magnetic field
in the rest frame of the atom. Its frequency f1 = 1/Δt
depends only on the velocity vH of the beam as long
as the magnetic field geometry, which defines λ, is
constant. This allows one to control the induced fre-
quency in a wide range and to observe direct transi-
tions between quantum states with an energy difference
of about 1 MHz for vH ∼ 105 m/s down to 10 kHz for
beams with vH ∼ 103 m/s like in Ref. [19] as long as
the Sona condition (Eq. 1) is still valid. In addition,
the distance between the Sona coils can be increased to
decrease the frequency even further. Here it should be
mentioned that the wavelength λ of the static magnetic
field oscillation is not a linear function of the distance
between the Sona coils. If the coils are very close to each
other the maxima of the magnetic fields in each solenoid
are not in the center but shifted further from the zero-
crossing in between. If the distance between the coils
surpasses a limit, then the radial magnetic field at the
zero-crossing will develop a second maximum like it is
shown in Fig. 2c.

(ii) Alternatively, one can exploit the nonlinearity
of the well-known binding energies of the hyperfine
substates α2 as function of the magnetic field to cal-
ibrate the frequency f1 and the magnetic field. With
an effective magnetic field B′ as input, the Breit–Rabi
formula can be used to calculate the energy difference
between the hyperfine substates (see Fig. 1). For the
measurement shown in Fig. 3, the first peak appears at
a current of 0.09 A through the Sona coils that corre-
spond to a maximum magnetic field of Bmax = 0.31 mT
inside the coils. For the next resonances, the differences
between the corresponding magnetic fields increase for
the α2 ↔ α1 transitions with larger n and decrease
for β3 ↔ α2. At the same time, the energy differences
between the states ΔE = ΔE(B′) = n · h · f depend
only on the integer n and the induced RF f1, which
is constant for a constant velocity of the atoms and
a fixed experimental setup. In this way, a calibration
for the effective magnetic field B′ = (0.723 ± 0.003) ·
Bmax+(0.004±0.02) mT could be found with an offset
at zero current due to not perfectly shielded external
fields. For a scan from I = 0 up to 2 A in the Sona
coils nmax = 12 resonances are found for the transi-

123



  257 Page 6 of 7 Eur. Phys. J. D          (2021) 75:257 

tions between α2 ↔ α1 (Fig. 1 and 3) and nmax = 26 for
β3 ↔ α2. In this way, ΔEn=1 = (1.462±0.003)·10−8 eV
or f1 = (3.536 ± 0.007) MHz was determined with the
current setup, which corresponds to an absolute uncer-
tainty of ΔE∼10−11 eV or Δf∼10 kHz.

5 Discussion and outlook

This new method presented here allows one to overcome
limitations of radio-frequency cavities to induce transi-
tions between quantum states with very small energy
differences. It employs a bipolar static magnetic field,
and a through-going beam whose velocity is the tune-
able parameter. The method is in principle applicable
to any kind of beam. Of course, it is necessary to polar-
ize the beam first, e.g., with a laser, and then to ana-
lyze the induced transitions afterward. To demonstrate
that the method works, in the paper it was successfully
applied to induce magnetic dipole transitions between
hyperfine substates of metastable hydrogen atoms. The
results perfectly fit to the predictions of the Schrödinger
equation. Therefore, the wavelength λ of such a transi-
tion unit can be optimized for other quantum systems,
atoms or molecules, where similar energy differences
should be investigated and then calibrated to a mea-
surement with metastable hydrogen atoms of a given
velocity. The wavelength λ is entirely determined by
the distance of the solenoids, and the induced photon
energy ΔE can be manipulated by tuning the beam
velocity. Another option of such a transition unit is the
measurement of further Breit–Rabi diagrams, i.e., the
hyperfine splitting energy of substates with different
mF , of different atoms and molecules by ramping the
magnetic field amplitudes for a given beam velocity.
Further improvements, e.g., better statistics due to a
new electron–cyclotron resonance (ECR) ion source for
proton beams up to 20 μA, more convenient setups of
the magnetic fields in the Sona transition unit and bet-
ter shielding of the external fields, are expected to per-
mit a reduction of the uncertainty by another factor 10.
If the beam energy and, thus, the velocity of the pro-
tons are changed in the ionizer, ΔE and f1 are modified
too, but the fraction remains to be Planck’s constant h.
Thus, the statistical uncertainty can be decreased fur-
ther to measure the hyperfine splitting energies of these
states as function of a (small) magnetic field down to
10−13 eV or 100 Hz, correspondingly.

The Schrödinger equation itself has the potential to
deliver an analysis that can be even more precise: If the
occupation numbers of the hyperfine substates are mea-
sured like in Fig. 3, it is even possible to calculate the
longitudinal magnetic field distribution B(t) along the
beam axis in the Sona coils from these data inversely. A
Fourier expansion of the deduced radial magnetic field
delivers directly the frequencies f1 of the oscillation of
the radial component Brad, and therefore, the energy
difference ΔE between the substates for the single res-
onances and the corresponding magnetic fields B′.

In principle, the type of induced transitions, e.g., mag-
netic or electric dipole transitions (M1 ↔ E1) and the
polarization of the induced photons (π ↔ σ transi-
tions), can be chosen with dedicated magnetic or even
electric field configurations.

The same method works for metastable deuterium
atoms as well. Here, the Sona transition unit transfers
all atoms from the state α1(F = 3/2,mF = +3/2) into
β4(mF = −3/2) and vice versa; the spinfilter is able
to separate the α substates α1, α2(mF = +1/2), and
α3(mF = −1/2).

With only minor improvements, even the described
setup allows one to test the actual QED corrections [20]
of the Breit–Rabi formula that are on a level of 10−3 up
to 10−2 of the values for the observable transitions at
our magnetic fields below 5 mT. Of course, the mag-
netic field amplitudes are not limited to the Zeeman
region and can be expanded much further to increase
the precision by observing even more oscillations.

This new type of spectroscopy is a beautiful exam-
ple to describe experimental results with the tools of
quantum mechanics and allows one to determine and
to observe the smallest direct transitions between two
quantum states. With lower beam velocities and larger
distances between the coils, even smaller energy differ-
ences are directly accessible as long as the quality of
the magnetic field configuration is sufficient. This pre-
cision opens the door not only to QED tests of the
hyperfine splitting energies but even to a new type of
parity-violation experiments with hydrogen and deu-
terium atoms [21] or to observe the longitudinal Stern–
Gerlach effect on metastable atoms in different hyper-
fine substates [22].
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