000897341 001__ 897341
000897341 005__ 20230217124530.0
000897341 0247_ $$2doi$$a10.1103/PhysRevB.104.104108
000897341 0247_ $$2ISSN$$a1098-0121
000897341 0247_ $$2ISSN$$a2469-9977
000897341 0247_ $$2ISSN$$a0163-1829
000897341 0247_ $$2ISSN$$a0556-2805
000897341 0247_ $$2ISSN$$a1095-3795
000897341 0247_ $$2ISSN$$a1538-4489
000897341 0247_ $$2ISSN$$a1550-235X
000897341 0247_ $$2ISSN$$a2469-9950
000897341 0247_ $$2ISSN$$a2469-9969
000897341 0247_ $$2Handle$$a2128/28719
000897341 0247_ $$2WOS$$aWOS:000704414400001
000897341 037__ $$aFZJ-2021-03741
000897341 082__ $$a530
000897341 1001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b0$$eCorresponding author
000897341 245__ $$aRole of ionization in imaging and spectroscopy utilizing fast electrons that have excited phonons
000897341 260__ $$aWoodbury, NY$$bInst.$$c2021
000897341 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2021-09-30
000897341 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2021-09-01
000897341 3367_ $$2DRIVER$$aarticle
000897341 3367_ $$2DataCite$$aOutput Types/Journal article
000897341 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633086029_10290
000897341 3367_ $$2BibTeX$$aARTICLE
000897341 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897341 3367_ $$00$$2EndNote$$aJournal Article
000897341 520__ $$aAtomic resolution scanning transmission electron microscopy, based on counting fast electrons that have been scattered to large angles after exciting a phonon, so-called high-angle annular dark-field (HAADF) imaging, is widely used in materials science. Recently atomic resolution phonon spectroscopy has been demonstrated. In both cases experiments are usually modeled taking into account only elastic scattering and the inelastic scattering due to phonon excitation. However, other inelastic processes, such as plasmon excitation and single electron excitation, also play a role. In this paper we will focus on the role of ionization and its influence on imaging and spectroscopy based on phonon excitation. Inelastic scattering due to ionization is mainly forward peaked, which has implications for phonon spectroscopy with a detector in the forward direction. Nevertheless, a substantial fraction of electrons scattered by phonon excitation to larger angles have also lost significant amounts of energy due to also being involved in an ionization event. We discuss the implications of this for HAADF imaging and phonon spectroscopy utilizing electrons scattered to these larger angles.
000897341 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000897341 542__ $$2Crossref$$i2021-09-30$$uhttps://link.aps.org/licenses/aps-default-license
000897341 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897341 7001_ $$0P:(DE-Juel1)172835$$aAllen, Leslie J.$$b1
000897341 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.104.104108$$bAmerican Physical Society (APS)$$d2021-09-30$$n10$$p104108$$tPhysical Review B$$v104$$x2469-9950$$y2021
000897341 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.104108$$gVol. 104, no. 10, p. 104108$$n10$$p104108$$tPhysical review / B$$v104$$x2469-9950$$y2021
000897341 8564_ $$uhttps://juser.fz-juelich.de/record/897341/files/PREPRINT%20BarthelAllen%20PRB104%20%282021%29%20104108%20-%20Role%20of%20ionization.pdf$$yOpenAccess
000897341 8564_ $$uhttps://juser.fz-juelich.de/record/897341/files/PhysRevB.104.104108.pdf$$yOpenAccess
000897341 909CO $$ooai:juser.fz-juelich.de:897341$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000897341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b0$$kFZJ
000897341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172835$$aForschungszentrum Jülich$$b1$$kFZJ
000897341 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000897341 9141_ $$y2021
000897341 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000897341 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000897341 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897341 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000897341 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000897341 920__ $$lyes
000897341 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000897341 980__ $$ajournal
000897341 980__ $$aVDB
000897341 980__ $$aUNRESTRICTED
000897341 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000897341 9801_ $$aFullTexts
000897341 999C5 $$1S. J. Pennycook$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4419-7200-2$$y2011
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.206101
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl102025s
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.266101
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.104103
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.085503
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2014.11.031
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.014110
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13870
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/jmicro/dfu023
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S1431927618002726
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-019-0675-5
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2018.12.006
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-03049-y
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.016103
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aba1136
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.184109
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-3991(94)90044-2
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/PROC-466-113
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.1984.0065
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.024108
000897341 999C5 $$1R. D. Cowan$$2Crossref$$9-- missing cx lookup --$$a10.1525/9780520906150$$y1981
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108767301012582
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2014.10.011
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.025501
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0365110X57002194
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2015.10.001
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0365110X52001064
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S143192761200013X
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108767394013292
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2009.11.009
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108768195003752
000897341 999C5 $$1R. F. Egerton$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4419-9583-4$$y2011
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.107.450
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4711766
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2012.09.001
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.054103
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2011.04.009
000897341 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2017.09.012