Home > Publications database > Role of ionization in imaging and spectroscopy utilizing fast electrons that have excited phonons > print |
001 | 897341 | ||
005 | 20230217124530.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.104.104108 |2 doi |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/28719 |2 Handle |
024 | 7 | _ | |a WOS:000704414400001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03741 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Barthel, Juri |0 P:(DE-Juel1)130525 |b 0 |e Corresponding author |
245 | _ | _ | |a Role of ionization in imaging and spectroscopy utilizing fast electrons that have excited phonons |
260 | _ | _ | |a Woodbury, NY |c 2021 |b Inst. |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2021-09-30 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2021-09-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1633086029_10290 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Atomic resolution scanning transmission electron microscopy, based on counting fast electrons that have been scattered to large angles after exciting a phonon, so-called high-angle annular dark-field (HAADF) imaging, is widely used in materials science. Recently atomic resolution phonon spectroscopy has been demonstrated. In both cases experiments are usually modeled taking into account only elastic scattering and the inelastic scattering due to phonon excitation. However, other inelastic processes, such as plasmon excitation and single electron excitation, also play a role. In this paper we will focus on the role of ionization and its influence on imaging and spectroscopy based on phonon excitation. Inelastic scattering due to ionization is mainly forward peaked, which has implications for phonon spectroscopy with a detector in the forward direction. Nevertheless, a substantial fraction of electrons scattered by phonon excitation to larger angles have also lost significant amounts of energy due to also being involved in an ionization event. We discuss the implications of this for HAADF imaging and phonon spectroscopy utilizing electrons scattered to these larger angles. |
536 | _ | _ | |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535) |0 G:(DE-HGF)POF4-5353 |c POF4-535 |f POF IV |x 0 |
542 | _ | _ | |i 2021-09-30 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Allen, Leslie J. |0 P:(DE-Juel1)172835 |b 1 |
773 | 1 | 8 | |a 10.1103/physrevb.104.104108 |b American Physical Society (APS) |d 2021-09-30 |n 10 |p 104108 |3 journal-article |2 Crossref |t Physical Review B |v 104 |y 2021 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.104.104108 |g Vol. 104, no. 10, p. 104108 |0 PERI:(DE-600)2844160-6 |n 10 |p 104108 |t Physical review / B |v 104 |y 2021 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/897341/files/PREPRINT%20BarthelAllen%20PRB104%20%282021%29%20104108%20-%20Role%20of%20ionization.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/897341/files/PhysRevB.104.104108.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:897341 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130525 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172835 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5353 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-10-13 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-10-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-10-13 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1007/978-1-4419-7200-2 |1 S. J. Pennycook |2 Crossref |9 -- missing cx lookup -- |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevLett.100.206101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl102025s |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.266101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.82.104103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.106.085503 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2014.11.031 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.014110 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature13870 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/jmicro/dfu023 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S1431927618002726 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41567-019-0675-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2018.12.006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41586-020-03049-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.122.016103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.aba1136 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.101.184109 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0304-3991(94)90044-2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1557/PROC-466-113 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1098/rspa.1984.0065 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.86.024108 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1525/9780520906150 |1 R. D. Cowan |2 Crossref |9 -- missing cx lookup -- |y 1981 |
999 | C | 5 | |a 10.1107/S0108767301012582 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2014.10.011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.124.025501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0365110X57002194 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2015.10.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0365110X52001064 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S143192761200013X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0108767394013292 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2009.11.009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0108768195003752 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-1-4419-9583-4 |1 R. F. Egerton |2 Crossref |9 -- missing cx lookup -- |y 2011 |
999 | C | 5 | |a 10.1103/PhysRev.107.450 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.4711766 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2012.09.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.77.054103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2011.04.009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ultramic.2017.09.012 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|