000897357 001__ 897357
000897357 005__ 20220222143556.0
000897357 0247_ $$2doi$$a10.1002/slct.202102045
000897357 0247_ $$2Handle$$a2128/28722
000897357 0247_ $$2altmetric$$aaltmetric:113401328
000897357 0247_ $$2WOS$$aWOS:000693218500049
000897357 037__ $$aFZJ-2021-03745
000897357 082__ $$a540
000897357 1001_ $$0P:(DE-HGF)0$$aHamada, Takashi$$b0$$eCorresponding author
000897357 245__ $$aHydrophobic Effect on Alkaline Stability of Graft Chains in Ammonium‐type Anion Exchange Membranes Prepared by Radiation‐Induced Graft Polymerization
000897357 260__ $$aWeinheim$$bWiley-VCH$$c2021
000897357 3367_ $$2DRIVER$$aarticle
000897357 3367_ $$2DataCite$$aOutput Types/Journal article
000897357 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645451162_27837
000897357 3367_ $$2BibTeX$$aARTICLE
000897357 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897357 3367_ $$00$$2EndNote$$aJournal Article
000897357 520__ $$aVinylbenzyltrimethylammonium hydroxide (VBA) and styrene (St) cografted poly(ethylene-co-tetrafluoroethylene) anion exchange membranes (VBA/St-AEM) were prepared by the radiation-induced graft polymerization of chloromethylstyrene and St and sequential quaternization and anion exchange reactions. Increasing the St content in the grafts to 63 % resulted in a gradual 21 % and 34 % decrease in the conductivity and water uptake, respectively, compared to those in the VBA-homo-grafted AEM. AEMs with a higher St content (81 %) showed a 9 % and 18 % higher conductivity and water uptake, respectively. Small-angle neutron scattering showed that the sudden growth of “water puddles” consisting of water-rich nano-domains dispersed randomly in phase-separated hydrophilic ion channels enhanced the conductivity and water uptake. In the alkaline durability test of VBA/St-AEM in 1 M potassium hydroxide at 80 °C for 720 h, the loss of the conductivity was suppressed from 43 % to 8 %, when the St contents in the grafts were increased from 0 % to 63 %.
000897357 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000897357 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000897357 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897357 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000897357 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000897357 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000897357 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000897357 7001_ $$0P:(DE-HGF)0$$aZhao, Yue$$b1
000897357 7001_ $$0P:(DE-HGF)0$$aYoshimura, Kimio$$b2
000897357 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b3
000897357 7001_ $$0P:(DE-HGF)0$$aOhwada, Kenji$$b4
000897357 7001_ $$0P:(DE-HGF)0$$aMaekawa, Yasunari$$b5$$eCorresponding author
000897357 773__ $$0PERI:(DE-600)2844262-3$$a10.1002/slct.202102045$$gVol. 6, no. 33, p. 8879 - 8888$$n33$$p8879 - 8888$$tChemistrySelect$$v6$$x2365-6549$$y2021
000897357 8564_ $$uhttps://juser.fz-juelich.de/record/897357/files/Hamada%20et%20al_final%20version.pdf$$yPublished on 2021-09-06. Available in OpenAccess from 2022-09-06.
000897357 8564_ $$uhttps://juser.fz-juelich.de/record/897357/files/slct.202102045.pdf$$yRestricted
000897357 909CO $$ooai:juser.fz-juelich.de:897357$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000897357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b3$$kFZJ
000897357 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000897357 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000897357 9141_ $$y2021
000897357 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000897357 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMISTRYSELECT : 2019$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000897357 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000897357 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000897357 920__ $$lyes
000897357 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000897357 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000897357 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000897357 980__ $$ajournal
000897357 980__ $$aVDB
000897357 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000897357 980__ $$aI:(DE-588b)4597118-3
000897357 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000897357 980__ $$aUNRESTRICTED
000897357 9801_ $$aFullTexts