001     897359
005     20240507205536.0
024 7 _ |a 10.3389/frwa.2021.745563
|2 doi
024 7 _ |a 2128/28759
|2 Handle
024 7 _ |a altmetric:113500999
|2 altmetric
024 7 _ |a WOS:000705052600001
|2 WOS
037 _ _ |a FZJ-2021-03747
082 _ _ |a 333.7
100 1 _ |a Tesch, Tobias
|0 P:(DE-Juel1)178989
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Variant Approach for Identifying Spurious Relations that Deep Learning Models Learn
260 _ _ |a Lausanne
|c 2021
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715083831_7023
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A deep learning (DL) model learns a function relating a set of input variables with a set of target variables. While the representation of this function in form of the DL model often lacks interpretability, several interpretation methods exist that provide descriptions of the function (e.g., measures of feature importance). On the one hand, these descriptions may build trust in the model or reveal its limitations. On the other hand, they may lead to new scientific understanding. In any case, a description is only useful if one is able to identify if parts of it reflect spurious instead of causal relations (e.g., random associations in the training data instead of associations due to a physical process). However, this can be challenging even for experts because, in scientific tasks, causal relations between input and target variables are often unknown or extremely complex. Commonly, this challenge is addressed by training separate instances of the considered model on random samples of the training set and identifying differences between the obtained descriptions. Here, we demonstrate that this may not be sufficient and propose to additionally consider more general modifications of the prediction task. We refer to the proposed approach as variant approach and demonstrate its usefulness and its superiority over pure sampling approaches with two illustrative prediction tasks from hydrometeorology. While being conceptually simple, to our knowledge the approach has not been formalized and systematically evaluated before.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 1
|u fzj
700 1 _ |a Garcke, Jochen
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.3389/frwa.2021.745563
|g Vol. 3, p. 745563
|0 PERI:(DE-600)2986721-6
|p 745563
|t Frontiers in water
|v 3
|y 2021
|x 2624-9375
856 4 _ |u https://juser.fz-juelich.de/record/897359/files/Tesch%20et%20al%202021%20Variant%20Approach%20for%20Identifying%20Spurious%20Relations%20that%20Deep%20Learning%20Models%20Learn.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:897359
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178989
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT WATER : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-03T10:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-03T10:51:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-03T10:51:43Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-03T10:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21