000897360 001__ 897360
000897360 005__ 20240712113234.0
000897360 0247_ $$2doi$$a10.1016/j.molliq.2021.117712
000897360 0247_ $$2ISSN$$a0167-7322
000897360 0247_ $$2ISSN$$a1873-3166
000897360 0247_ $$2Handle$$a2128/28733
000897360 0247_ $$2WOS$$aWOS:000708703200074
000897360 037__ $$aFZJ-2021-03748
000897360 082__ $$a540
000897360 1001_ $$0P:(DE-Juel1)173951$$aLin, Jingjing$$b0
000897360 245__ $$aThe Charge Transport Mechanism in Brønsted-Acidic Protic Ionic Liquid/Water Systems – An NMR and QENS Study
000897360 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000897360 3367_ $$2DRIVER$$aarticle
000897360 3367_ $$2DataCite$$aOutput Types/Journal article
000897360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633443556_25064
000897360 3367_ $$2BibTeX$$aARTICLE
000897360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897360 3367_ $$00$$2EndNote$$aJournal Article
000897360 520__ $$aIn this study, a protic ionic liquid (PIL), 2-Sulfoethylmethylammonium triflate [2-Sema][TfO] is considered as a potential new proton conducting electrolyte for future polymer membrane fuel cells capable of ambient air operation above 100 °C. The proton dynamics of the PIL with residual water are examined as a function of the hydration level on different time scales using pulsed field gradient nuclear magnetic resonance (PFG-NMR) and quasi-elastic neutron scattering (QENS). The separation of the different contributing relaxation processes enables a quantification of the proton fractions for the underlying hopping or vehicular motions. The hopping motion of the water in the time scale of picosecond and the vehicular motion in the time scale of nanosecond are detected by means of QENS. Such dynamic processes can be well described by the Chudley-Elliot jump model. This emphasised the presence of fixed jump lenghts. In the timescale of millisecond, the cooperative transport of the active protons of the acidic SO3H group and of the H2O molecules, as well as the vehicular transport of the PIL cations are detected by NMR. The different diffusion coefficients obtained by the NMR and QENS techniques are discussed in detail.
000897360 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000897360 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000897360 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x2
000897360 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897360 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000897360 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000897360 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000897360 7001_ $$0P:(DE-Juel1)165355$$aNoferini, Daria$$b1
000897360 7001_ $$0P:(DE-Juel1)171130$$aVeroutis, Emmanouil$$b2
000897360 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b3$$eCorresponding author
000897360 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4
000897360 773__ $$0PERI:(DE-600)1491496-7$$a10.1016/j.molliq.2021.117712$$gp. 117712 -$$p117712 -$$tJournal of molecular liquids$$v343$$x0167-7322$$y2021
000897360 8564_ $$uhttps://juser.fz-juelich.de/record/897360/files/SI_Re_J.L.docx$$yRestricted
000897360 8564_ $$uhttps://juser.fz-juelich.de/record/897360/files/manuscript_Re_J.L.docx$$yPublished on 2021-09-29. Available in OpenAccess from 2023-09-29.
000897360 909CO $$ooai:juser.fz-juelich.de:897360$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000897360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173951$$aForschungszentrum Jülich$$b0$$kFZJ
000897360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171130$$aForschungszentrum Jülich$$b2$$kFZJ
000897360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b3$$kFZJ
000897360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ
000897360 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000897360 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000897360 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x2
000897360 9141_ $$y2021
000897360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000897360 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000897360 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000897360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL LIQ : 2019$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL LIQ : 2019$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000897360 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000897360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000897360 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000897360 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000897360 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000897360 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x3
000897360 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x4
000897360 9801_ $$aFullTexts
000897360 980__ $$ajournal
000897360 980__ $$aVDB
000897360 980__ $$aUNRESTRICTED
000897360 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000897360 980__ $$aI:(DE-588b)4597118-3
000897360 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000897360 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000897360 980__ $$aI:(DE-Juel1)IEK-14-20191129
000897360 981__ $$aI:(DE-Juel1)IET-4-20191129