Home > Publications database > Orbital magnetoelectric effect in zigzag nanoribbons of p-band systems > print |
001 | 897365 | ||
005 | 20250317091732.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.104.165403 |2 doi |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/28723 |2 Handle |
024 | 7 | _ | |a altmetric:114339128 |2 altmetric |
024 | 7 | _ | |a WOS:000705623300005 |2 WOS |
037 | _ | _ | |a FZJ-2021-03752 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Cysne, Tarik P. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Orbital magnetoelectric effect in zigzag nanoribbons of p-band systems |
260 | _ | _ | |a Woodbury, NY |c 2021 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1633414788_25064 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Profiles of the spin and orbital angular momentum accumulations induced by a longitudinally applied electric field are explored in nanoribbons of p-band systems with a honeycomb lattice. We show that nanoribbons with zigzag borders can exhibit orbital magnetoelectric effects. More specifically, we have found that purely orbital magnetization oriented perpendicularly to the ribbon may be induced in these systems by means of the external electric field when sublattice symmetry is broken. The effect is rather general and may occur in other multiorbital materials. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |0 G:(DE-Juel-1)ATMLAO |a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO) |c ATMLAO |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Guimarães, Filipe S. M. |0 P:(DE-Juel1)162225 |b 1 |
700 | 1 | _ | |a Canonico, Luis M. |0 0000-0001-9266-7213 |b 2 |
700 | 1 | _ | |a Rappoport, Tatiana G. |0 0000-0002-1878-5956 |b 3 |
700 | 1 | _ | |a Muniz, R. B. |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1103/PhysRevB.104.165403 |g Vol. 104, no. 16, p. 165403 |0 PERI:(DE-600)2844160-6 |n 16 |p 165403 |t Physical review / B |v 104 |y 2021 |x 2469-9969 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/897365/files/OME_nanoribbon.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/897365/files/PhysRevB.104.165403.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:897365 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162225 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2019 |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|