000897397 001__ 897397
000897397 005__ 20230303094653.0
000897397 0247_ $$2doi$$a10.1007/s00253-021-11473-x
000897397 0247_ $$2ISSN$$a0171-1741
000897397 0247_ $$2ISSN$$a0175-7598
000897397 0247_ $$2ISSN$$a0340-2118
000897397 0247_ $$2ISSN$$a1432-0614
000897397 0247_ $$2Handle$$a2128/28730
000897397 0247_ $$2pmid$$a34448898
000897397 0247_ $$2WOS$$aWOS:000690366300002
000897397 037__ $$aFZJ-2021-03763
000897397 082__ $$a570
000897397 1001_ $$0P:(DE-Juel1)174340$$aFricke, Philipp Moritz$$b0
000897397 245__ $$aHighly tunable TetR-dependent target gene expression in the acetic acid bacterium Gluconobacter oxydans
000897397 260__ $$aNew York$$bSpringer$$c2021
000897397 3367_ $$2DRIVER$$aarticle
000897397 3367_ $$2DataCite$$aOutput Types/Journal article
000897397 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641298752_23856
000897397 3367_ $$2BibTeX$$aARTICLE
000897397 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897397 3367_ $$00$$2EndNote$$aJournal Article
000897397 500__ $$aBiotechnologie 1
000897397 520__ $$aFor the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first tight system for regulatable target gene expression became available based on the heterologous repressor-activator protein AraC from Escherichia coli and the target promoter ParaBAD. In this study, we tested pure repressor-based TetR- and LacI-dependent target gene expression in G. oxydans by applying the same plasmid backbone and construction principles that we have used successfully for the araC-ParaBAD system. When using a pBBR1MCS-5-based plasmid, the non-induced basal expression of the Tn10-based TetR-dependent expression system was extremely low. This allowed calculated induction ratios of up to more than 3500-fold with the fluorescence reporter protein mNeonGreen (mNG). The induction was highly homogeneous and tunable by varying the anhydrotetracycline concentration from 10 to 200 ng/mL. The already strong reporter gene expression could be doubled by inserting the ribosome binding site AGGAGA into the 3’ region of the Ptet sequence upstream from mNG. Alternative plasmid constructs used as controls revealed a strong influence of transcription terminators and antibiotics resistance gene of the plasmid backbone on the resulting expression performance. In contrast to the TetR-Ptet-system, pBBR1MCS-5-based LacI-dependent expression from PlacUV5 always exhibited some non-induced basal reporter expression and was therefore tunable only up to 40-fold induction by IPTG. The leakiness of PlacUV5 when not induced was independent of potential read-through from the lacI promoter. Protein-DNA binding simulations for pH 7, 6, 5, and 4 by computational modeling of LacI, TetR, and AraC with DNA suggested a decreased DNA binding of LacI when pH is below 6, the latter possibly causing the leakiness of LacI-dependent systems hitherto tested in AAB. In summary, the expression performance of the pBBR1MCS-5-based TetR-Ptet system makes this system highly suitable for applications in G. oxydans and possibly in other AAB.
000897397 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897397 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897397 7001_ $$00000-0002-6198-8767$$aLürkens, Martha$$b1
000897397 7001_ $$0P:(DE-Juel1)165889$$aHünnefeld, Max$$b2
000897397 7001_ $$0P:(DE-Juel1)171488$$aSonntag, Christiane K.$$b3
000897397 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b4
000897397 7001_ $$00000-0003-0089-7156$$aDavari, Mehdi D.$$b5
000897397 7001_ $$0P:(DE-Juel1)128982$$aPolen, Tino$$b6$$eCorresponding author
000897397 773__ $$0PERI:(DE-600)1464336-4$$a10.1007/s00253-021-11473-x$$gVol. 105, no. 18, p. 6835 - 6852$$n18$$p6835 - 6852$$tApplied microbiology and biotechnology$$v105$$x1432-0614$$y2021
000897397 8564_ $$uhttps://juser.fz-juelich.de/record/897397/files/Fricke2021_Article_HighlyTunableTetR-dependentTar.pdf$$yOpenAccess
000897397 8767_ $$d2021-08-27$$eHybrid-OA$$jDEAL
000897397 909CO $$ooai:juser.fz-juelich.de:897397$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000897397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174340$$aForschungszentrum Jülich$$b0$$kFZJ
000897397 9101_ $$0I:(DE-588b)36225-6$$60000-0002-6198-8767$$aRWTH Aachen$$b1$$kRWTH
000897397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165889$$aForschungszentrum Jülich$$b2$$kFZJ
000897397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171488$$aForschungszentrum Jülich$$b3$$kFZJ
000897397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b4$$kFZJ
000897397 9101_ $$0I:(DE-HGF)0$$60000-0003-0089-7156$$aExternal Institute$$b5$$kExtern
000897397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128982$$aForschungszentrum Jülich$$b6$$kFZJ
000897397 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897397 9141_ $$y2021
000897397 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897397 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MICROBIOL BIOT : 2019$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000897397 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000897397 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000897397 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897397 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000897397 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000897397 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000897397 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000897397 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000897397 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000897397 920__ $$lyes
000897397 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000897397 9801_ $$aFullTexts
000897397 980__ $$ajournal
000897397 980__ $$aVDB
000897397 980__ $$aI:(DE-Juel1)IBG-1-20101118
000897397 980__ $$aUNRESTRICTED
000897397 980__ $$aAPC