000897399 001__ 897399
000897399 005__ 20220930130328.0
000897399 0247_ $$2doi$$a10.1186/s12934-021-01672-6
000897399 0247_ $$2Handle$$a2128/28731
000897399 0247_ $$2pmid$$a34592997
000897399 0247_ $$2WOS$$aWOS:000702398500001
000897399 037__ $$aFZJ-2021-03765
000897399 082__ $$a570
000897399 1001_ $$0P:(DE-Juel1)177776$$aMüller, Carolin$$b0$$ufzj
000897399 245__ $$aScaling production of GFP1-10 detector protein in E. coli for secretion screening by split GFP assay
000897399 260__ $$aLondon$$bBiomed Central$$c2021
000897399 3367_ $$2DRIVER$$aarticle
000897399 3367_ $$2DataCite$$aOutput Types/Journal article
000897399 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633442760_23751
000897399 3367_ $$2BibTeX$$aARTICLE
000897399 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897399 3367_ $$00$$2EndNote$$aJournal Article
000897399 520__ $$aBackgroundThe split GFP assay is a well-known technology for activity-independent screening of target proteins. A superfolder GFP is split into two non-fluorescent parts, GFP11 which is fused to the target protein and GFP1-10. In the presence of both, GFP1-10 and the GFP11-tag are self-assembled and a functional chromophore is formed. However, it relies on the availability and quality of GFP1-10 detector protein to develop fluorescence by assembly with the GFP11-tag connected to the target protein. GFP1-10 detector protein is often produced in small scale shake flask cultivation and purified from inclusion bodies.ResultsThe production of GFP1-10 in inclusion bodies and purification was comprehensively studied based on Escherichia coli as host. Cultivation in complex and defined medium as well as different feed strategies were tested in laboratory-scale bioreactor cultivation and a standardized process was developed providing high quantity of GFP1-10 detector protein with suitable quality. Split GFP assay was standardized to obtain robust and reliable assay results from cutinase secretion strains of Corynebacterium glutamicum with Bacillus subtilis Sec signal peptides NprE and Pel. Influencing factors from environmental conditions, such as pH and temperature were thoroughly investigated.ConclusionsGFP1-10 detector protein production could be successfully scaled from shake flask to laboratory scale bioreactor. A single run yielded sufficient material for up to 385 96-well plate screening runs. The application study with cutinase secretory strains showed very high correlation between measured cutinase activity to split GFP fluorescence signal proofing applicability for larger screening studies.
000897399 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897399 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897399 7001_ $$0P:(DE-Juel1)180167$$aIgwe, Chika L.$$b1
000897399 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b2$$ufzj
000897399 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b3$$eCorresponding author
000897399 773__ $$0PERI:(DE-600)2091377-1$$a10.1186/s12934-021-01672-6$$gVol. 20, no. 1, p. 191$$n1$$p191$$tMicrobial cell factories$$v20$$x1475-2859$$y2021
000897399 8564_ $$uhttps://juser.fz-juelich.de/record/897399/files/s12934-021-01672-6.pdf$$yOpenAccess
000897399 8767_ $$8SN-2021-00708-b$$92021-12-02$$d2021-12-07$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr.: 1200174041
000897399 909CO $$ooai:juser.fz-juelich.de:897399$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000897399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177776$$aForschungszentrum Jülich$$b0$$kFZJ
000897399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b2$$kFZJ
000897399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b3$$kFZJ
000897399 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897399 9141_ $$y2021
000897399 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897399 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROB CELL FACT : 2019$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897399 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000897399 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000897399 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000897399 9801_ $$aFullTexts
000897399 980__ $$ajournal
000897399 980__ $$aVDB
000897399 980__ $$aUNRESTRICTED
000897399 980__ $$aI:(DE-Juel1)IBG-1-20101118
000897399 980__ $$aAPC