| Home > Publications database > Nuclear and thermal analysis of a multi-reflectometer system for DEMO > print |
| 001 | 897403 | ||
| 005 | 20240708133334.0 | ||
| 024 | 7 | _ | |a 10.1016/j.fusengdes.2021.112349 |2 doi |
| 024 | 7 | _ | |a 0920-3796 |2 ISSN |
| 024 | 7 | _ | |a 1873-7196 |2 ISSN |
| 024 | 7 | _ | |a 2128/28734 |2 Handle |
| 024 | 7 | _ | |a WOS:000670070500002 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-03769 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Nietiadi, Yohanes |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Nuclear and thermal analysis of a multi-reflectometer system for DEMO |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1633443765_27023 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The reflectometry diagnostics for DEMO is envisaged to provide the radial edge density at several poloidal angles and data for the feedback control for plasma position and shape. The primary integration approach for reflectometry in DEMO involves the incorporation of several groups of antennas and waveguides into a diagnostics slim cassette (DSC), a full poloidal sector to be integrated with the water-cooled lithium lead (WCLL) breeding blanket. As the front-end components of the DSC will be directly exposed to the plasma, an effective cooling system is required. In this work, the temperature distributions of a DSC segment were estimated with a coupled steady-state thermal analysis performed with ANSYS Mechanical and ANSYS CFX, using the system-coupling module of ANSYS Workbench. The results, which also involved the computation of nuclear heat loads with MCNP6, indicate that the proposed cooling system design will lower the operation temperatures by more than 300 °C when compared to previous designs. However, there will still be hotspots in some components, with temperatures above the limit of 550 °C for EUROFER under neutron irradiation. |
| 536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Luís, Raul |0 0000-0001-8949-0402 |b 1 |
| 700 | 1 | _ | |a Silva, Antonio |0 0000-0002-0003-7263 |b 2 |
| 700 | 1 | _ | |a Ricardo, Emanuel |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Gonçalves, Bruno |0 0000-0003-0670-1214 |b 4 |
| 700 | 1 | _ | |a Franke, Thomas |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Biel, Wolfgang |0 P:(DE-Juel1)129967 |b 6 |
| 773 | _ | _ | |a 10.1016/j.fusengdes.2021.112349 |g Vol. 167, p. 112349 - |0 PERI:(DE-600)1492280-0 |p 112349 - |t Fusion engineering and design |v 167 |y 2021 |x 0920-3796 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/897403/files/Postprint_Biel.pdf |y Published on 2021-02-24. Available in OpenAccess from 2023-02-24. |
| 909 | C | O | |o oai:juser.fz-juelich.de:897403 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129967 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FUSION ENG DES : 2019 |d 2021-01-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|