000897408 001__ 897408
000897408 005__ 20211018113105.0
000897408 0247_ $$2doi$$a10.1103/PhysRevB.104.064444
000897408 0247_ $$2ISSN$$a1098-0121
000897408 0247_ $$2ISSN$$a2469-9977
000897408 0247_ $$2ISSN$$a0163-1829
000897408 0247_ $$2ISSN$$a0556-2805
000897408 0247_ $$2ISSN$$a1095-3795
000897408 0247_ $$2ISSN$$a1538-4489
000897408 0247_ $$2ISSN$$a1550-235X
000897408 0247_ $$2ISSN$$a2469-9950
000897408 0247_ $$2ISSN$$a2469-9969
000897408 0247_ $$2Handle$$a2128/28728
000897408 0247_ $$2altmetric$$aaltmetric:112473363
000897408 0247_ $$2WOS$$aWOS:000691685400002
000897408 037__ $$aFZJ-2021-03774
000897408 041__ $$aEnglish
000897408 082__ $$a530
000897408 1001_ $$0P:(DE-HGF)0$$aYang, Lin$$b0$$eCorresponding author
000897408 245__ $$aEnhancing the ferromagnetic interlayer coupling between epitaxial SrRuO 3 layers
000897408 260__ $$aWoodbury, NY$$bInst.$$c2021
000897408 3367_ $$2DRIVER$$aarticle
000897408 3367_ $$2DataCite$$aOutput Types/Journal article
000897408 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633438301_23751
000897408 3367_ $$2BibTeX$$aARTICLE
000897408 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897408 3367_ $$00$$2EndNote$$aJournal Article
000897408 520__ $$aMagnetic interlayer coupling is a key ingredient in designing magnetic multilayers with functionalities that reach out to the realm of applications. In epitaxial ferromagnetic (FM) oxide multilayers, the magnetic interlayer coupling is, however, less studied and its prediction is often a challenging task. Ultrathin FM SrRuO3 epitaxial films with perpendicular magnetic anisotropy, interfaced with suitable oxides, may be susceptible of forming skyrmions. Hence, a strong FM interlayer coupling would be beneficial to achieve uniform switching behavior of a SrRuO3-based multilayer. Previous studies reported that the coupling of two SrRuO3 layers separated by a non-FM oxide spacer is at best weakly FM and the two FM layers switch at markedly different fields. Here we study the magnetic interlayer coupling between two FM SrRuO3 layers separated by ultrathin LaNiO3 in epitaxial heterostructures grown on SrTiO3(100) single crystals. We found that FM SrRuO3 layers separated by 2 monolayers (MLs) thick LaNiO3 show weak FM interlayer coupling of about 106μJ/m2 at 10 K. The coupling becomes strongly FM for four MLs thick (about 1.6 nm) LaNiO3 spacers and the two SrRuO3 layers reverse their magnetization at a common value of the perpendicular magnetic field. This is likely due to a transition of the LaNiO3 spacer from insulating to metallic, as its thickness increases.
000897408 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000897408 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897408 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b1
000897408 7001_ $$00000-0002-7540-2683$$aWysocki, Lena$$b2
000897408 7001_ $$00000-0003-4225-3981$$aSchöpf, Jörg$$b3
000897408 7001_ $$0P:(DE-HGF)0$$aJansen, Daniel$$b4
000897408 7001_ $$00000-0002-8225-608X$$aDas, Brajagopal$$b5
000897408 7001_ $$00000-0001-6305-7619$$aKornblum, Lior$$b6
000897408 7001_ $$00000-0002-3704-9890$$avan Loosdrecht, Paul H. M.$$b7
000897408 7001_ $$00000-0003-3196-7313$$aLindfors-Vrejoiu, Ionela$$b8
000897408 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.064444$$gVol. 104, no. 6, p. 064444$$n6$$p064444$$tPhysical review / B$$v104$$x2469-9969$$y2021
000897408 8564_ $$uhttps://juser.fz-juelich.de/record/897408/files/PhysRevB.104.064444.pdf$$yOpenAccess
000897408 909CO $$ooai:juser.fz-juelich.de:897408$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000897408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b1$$kFZJ
000897408 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000897408 9141_ $$y2021
000897408 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000897408 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000897408 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897408 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000897408 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000897408 920__ $$lyes
000897408 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000897408 980__ $$ajournal
000897408 980__ $$aVDB
000897408 980__ $$aUNRESTRICTED
000897408 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000897408 9801_ $$aFullTexts