000897431 001__ 897431
000897431 005__ 20240701202018.0
000897431 0247_ $$2doi$$a10.3389/fnins.2021.699926
000897431 0247_ $$2ISSN$$a1662-453X
000897431 0247_ $$2ISSN$$a1662-4548
000897431 0247_ $$2Handle$$a2128/28742
000897431 0247_ $$2pmid$$a34671235
000897431 0247_ $$2WOS$$aWOS:000717045000001
000897431 0247_ $$2altmetric$$aaltmetric:115315627
000897431 037__ $$aFZJ-2021-03785
000897431 082__ $$a610
000897431 1001_ $$0P:(DE-Juel1)144347$$aWilluweit, Antje$$b0$$eCorresponding author$$ufzj
000897431 245__ $$aComparison of the Amyloid Load in the Brains of Two Transgenic Alzheimer’s Disease Mouse Models Quantified by Florbetaben Positron Emission Tomography
000897431 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021
000897431 3367_ $$2DRIVER$$aarticle
000897431 3367_ $$2DataCite$$aOutput Types/Journal article
000897431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719815161_15430
000897431 3367_ $$2BibTeX$$aARTICLE
000897431 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897431 3367_ $$00$$2EndNote$$aJournal Article
000897431 520__ $$aAlzheimer’s disease (AD) is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, which can be mimicked by transgenic mouse models. Here, we report on the characterization of amyloid load in the brains of two transgenic amyloidosis models using positron emission tomography (PET) with florbetaben (FBB), an 18F-labeled amyloid PET tracer routinely used in AD patients. Young, middle-aged, and old homozygous APP/PS1 mice (ARTE10), old hemizygous APPswe/PS1ΔE9, and old wild-type control mice were subjected to FBB PET using a small animal PET/computed tomography scanner. After PET, brains were excised, and ex vivo autoradiography was performed. Plaque pathology was verified on brain sections with histological methods. Amyloid plaque load increased progressively with age in the cortex and hippocampus of ARTE10 mice, which could be detected with both in vivo FBB PET and ex vivo autoradiography. FBB retention showed significant differences to wild-type controls already at 9 months of age by both in vivo and ex vivo analyses. An excellent correlation between data derived from PET and autoradiography could be obtained (rPearson = 0.947, p < 0.0001). Although amyloid load detected by FBB in the brains of old APPswe/PS1ΔE9 mice was as low as values obtained with young ARTE10 mice, statistically significant discrimination to wild-type animals was reached (p < 0.01). In comparison to amyloid burden quantified by histological analysis, FBB retention correlated best with total plaque load and number of congophilic plaques in the brains of both mouse models. In conclusion, the homozygous ARTE10 mouse model showed superior properties over APPswe/PS1ΔE9 mice for FBB small animal amyloid PET imaging. The absolute amount of congophilic dense-cored plaques seems to be the decisive factor for feasibility of amyloidosis models for amyloid PET analysis.
000897431 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000897431 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000897431 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897431 7001_ $$0P:(DE-Juel1)131792$$aSchöneck, Michael$$b1$$ufzj
000897431 7001_ $$0P:(DE-Juel1)165908$$aSchemmert, Sarah$$b2$$ufzj
000897431 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b3$$ufzj
000897431 7001_ $$0P:(DE-Juel1)180769$$aBremen, Saskia$$b4
000897431 7001_ $$0P:(DE-Juel1)164541$$aHonold, Dominik$$b5$$ufzj
000897431 7001_ $$0P:(DE-Juel1)173023$$aBurda, Nicole$$b6$$ufzj
000897431 7001_ $$0P:(DE-Juel1)145884$$aJiang, Nan$$b7
000897431 7001_ $$0P:(DE-Juel1)133864$$aBeer, Simone$$b8$$ufzj
000897431 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b9$$ufzj
000897431 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b10$$ufzj
000897431 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b11$$ufzj
000897431 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b12$$ufzj
000897431 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2021.699926$$gVol. 15, p. 699926$$p699926$$tFrontiers in neuroscience$$v15$$x1662-453X$$y2021
000897431 8564_ $$uhttps://juser.fz-juelich.de/record/897431/files/fnins-15-699926.pdf$$yOpenAccess
000897431 909CO $$ooai:juser.fz-juelich.de:897431$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b0$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131792$$aForschungszentrum Jülich$$b1$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165908$$aForschungszentrum Jülich$$b2$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164541$$aForschungszentrum Jülich$$b5$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173023$$aForschungszentrum Jülich$$b6$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133864$$aForschungszentrum Jülich$$b8$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b9$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b10$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b11$$kFZJ
000897431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b12$$kFZJ
000897431 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000897431 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000897431 9141_ $$y2021
000897431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000897431 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897431 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2019$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000897431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000897431 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000897431 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000897431 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000897431 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x3
000897431 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x4
000897431 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x5
000897431 980__ $$ajournal
000897431 980__ $$aVDB
000897431 980__ $$aI:(DE-Juel1)INM-4-20090406
000897431 980__ $$aI:(DE-Juel1)INM-11-20170113
000897431 980__ $$aI:(DE-Juel1)VDB1046
000897431 980__ $$aI:(DE-Juel1)IBI-7-20200312
000897431 980__ $$aI:(DE-Juel1)INM-2-20090406
000897431 980__ $$aI:(DE-Juel1)INM-5-20090406
000897431 980__ $$aUNRESTRICTED
000897431 9801_ $$aFullTexts