001     897431
005     20240701202018.0
024 7 _ |a 10.3389/fnins.2021.699926
|2 doi
024 7 _ |a 1662-453X
|2 ISSN
024 7 _ |a 1662-4548
|2 ISSN
024 7 _ |a 2128/28742
|2 Handle
024 7 _ |a 34671235
|2 pmid
024 7 _ |a WOS:000717045000001
|2 WOS
024 7 _ |a altmetric:115315627
|2 altmetric
037 _ _ |a FZJ-2021-03785
082 _ _ |a 610
100 1 _ |a Willuweit, Antje
|0 P:(DE-Juel1)144347
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Comparison of the Amyloid Load in the Brains of Two Transgenic Alzheimer’s Disease Mouse Models Quantified by Florbetaben Positron Emission Tomography
260 _ _ |a Lausanne
|c 2021
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719815161_15430
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer’s disease (AD) is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, which can be mimicked by transgenic mouse models. Here, we report on the characterization of amyloid load in the brains of two transgenic amyloidosis models using positron emission tomography (PET) with florbetaben (FBB), an 18F-labeled amyloid PET tracer routinely used in AD patients. Young, middle-aged, and old homozygous APP/PS1 mice (ARTE10), old hemizygous APPswe/PS1ΔE9, and old wild-type control mice were subjected to FBB PET using a small animal PET/computed tomography scanner. After PET, brains were excised, and ex vivo autoradiography was performed. Plaque pathology was verified on brain sections with histological methods. Amyloid plaque load increased progressively with age in the cortex and hippocampus of ARTE10 mice, which could be detected with both in vivo FBB PET and ex vivo autoradiography. FBB retention showed significant differences to wild-type controls already at 9 months of age by both in vivo and ex vivo analyses. An excellent correlation between data derived from PET and autoradiography could be obtained (rPearson = 0.947, p < 0.0001). Although amyloid load detected by FBB in the brains of old APPswe/PS1ΔE9 mice was as low as values obtained with young ARTE10 mice, statistically significant discrimination to wild-type animals was reached (p < 0.01). In comparison to amyloid burden quantified by histological analysis, FBB retention correlated best with total plaque load and number of congophilic plaques in the brains of both mouse models. In conclusion, the homozygous ARTE10 mouse model showed superior properties over APPswe/PS1ΔE9 mice for FBB small animal amyloid PET imaging. The absolute amount of congophilic dense-cored plaques seems to be the decisive factor for feasibility of amyloidosis models for amyloid PET analysis.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schöneck, Michael
|0 P:(DE-Juel1)131792
|b 1
|u fzj
700 1 _ |a Schemmert, Sarah
|0 P:(DE-Juel1)165908
|b 2
|u fzj
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 3
|u fzj
700 1 _ |a Bremen, Saskia
|0 P:(DE-Juel1)180769
|b 4
700 1 _ |a Honold, Dominik
|0 P:(DE-Juel1)164541
|b 5
|u fzj
700 1 _ |a Burda, Nicole
|0 P:(DE-Juel1)173023
|b 6
|u fzj
700 1 _ |a Jiang, Nan
|0 P:(DE-Juel1)145884
|b 7
700 1 _ |a Beer, Simone
|0 P:(DE-Juel1)133864
|b 8
|u fzj
700 1 _ |a Ermert, Johannes
|0 P:(DE-Juel1)131818
|b 9
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 10
|u fzj
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 11
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 12
|u fzj
773 _ _ |a 10.3389/fnins.2021.699926
|g Vol. 15, p. 699926
|0 PERI:(DE-600)2411902-7
|p 699926
|t Frontiers in neuroscience
|v 15
|y 2021
|x 1662-453X
856 4 _ |u https://juser.fz-juelich.de/record/897431/files/fnins-15-699926.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:897431
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165908
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)164541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)173023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)133864
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131818
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROSCI-SWITZ : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 3
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 4
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21