000897475 001__ 897475
000897475 005__ 20220103172052.0
000897475 0247_ $$2doi$$a10.1016/j.agsy.2021.103278
000897475 0247_ $$2ISSN$$a0308-521X
000897475 0247_ $$2ISSN$$a1873-2267
000897475 0247_ $$2Handle$$a2128/29154
000897475 0247_ $$2altmetric$$aaltmetric:113886675
000897475 0247_ $$2WOS$$aWOS:000701028300010
000897475 037__ $$aFZJ-2021-03808
000897475 082__ $$a640
000897475 1001_ $$0P:(DE-HGF)0$$aHao, Shirui$$b0$$eCorresponding author
000897475 245__ $$aPerformance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis
000897475 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000897475 3367_ $$2DRIVER$$aarticle
000897475 3367_ $$2DataCite$$aOutput Types/Journal article
000897475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637849403_22715
000897475 3367_ $$2BibTeX$$aARTICLE
000897475 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897475 3367_ $$00$$2EndNote$$aJournal Article
000897475 520__ $$aCONTEXTProcess-based crop models provide ways to predict crop growth, evaluate environmental impacts on crops, test various crop management options, and guide crop breeding. They can be used to explore options for mitigating climate change impacts when combined with climate projections and explore mitigation of environmental impacts of production. The Agricultural Production Systems SIMulator (APSIM) is a widely adopted crop model that offers modules for simulation of various crops, soil processes, climate, and grazing within a modelling system that enables robust addition of new components.OBJECTIVEThis study uses APSIM Classic-Wheat as an example to examine yield prediction accuracy of biophysically based crop yield modelling and to analyse the factors influencing the model performance.METHODSWe analysed yield prediction results of APSIM Classic-Wheat from 76 published studies across thirteen countries on four continents. In addition, a meta-database of modelled and observed yields from 30 studies was established and used to identify factors that influence yield prediction uncertainty.RESULTS AND CONCLUSIONSOur analysis indicates that, with site-specific calibration, APSIM predicts yield with a root mean squared error (RMSE) smaller than 1 t/ha and a normalised RMSE (NRMSE) of about 28%, across a wide range of environmental conditions for independent evaluation periods. The results show increasing errors in yield with limited modelling information and adverse environmental conditions. Using soil hydraulic parameters derived from site-specific measurements and/or tuning cultivar parameters improves yield prediction accuracy: RMSE decreases from 1.25 t/ha to 0.64 t/ha and NRMSE from 32% to 14%. Lower model accuracy was found where APSIM overestimates yield under high water deficit condition and when it underestimates yield under nitrogen limitation. APSIM severely over-predicts yield when some abiotic stresses such as heatwaves and frost affect the crop growth.
000897475 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897475 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897475 7001_ $$0P:(DE-HGF)0$$aRyu, Dongryeol$$b1
000897475 7001_ $$0P:(DE-HGF)0$$aWestern, Andrew$$b2
000897475 7001_ $$0P:(DE-HGF)0$$aPerry, Eileen$$b3
000897475 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b4$$ufzj
000897475 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b5$$ufzj
000897475 773__ $$0PERI:(DE-600)1495825-9$$a10.1016/j.agsy.2021.103278$$gVol. 194, p. 103278 -$$p103278 -$$tAgricultural systems$$v194$$x0308-521X$$y2021
000897475 8564_ $$uhttps://juser.fz-juelich.de/record/897475/files/AGSY-D-21-00531.pdf$$yPublished on 2021-09-22. Available in OpenAccess from 2023-09-22.
000897475 909CO $$ooai:juser.fz-juelich.de:897475$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000897475 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Melbourne University$$b0
000897475 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Melbourne University$$b1
000897475 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Melbourne University$$b2
000897475 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Melbourne University$$b3
000897475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b4$$kFZJ
000897475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b5$$kFZJ
000897475 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897475 9141_ $$y2021
000897475 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000897475 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000897475 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000897475 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGR SYST : 2019$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000897475 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000897475 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000897475 920__ $$lyes
000897475 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000897475 980__ $$ajournal
000897475 980__ $$aVDB
000897475 980__ $$aUNRESTRICTED
000897475 980__ $$aI:(DE-Juel1)IBG-3-20101118
000897475 9801_ $$aFullTexts