001     897475
005     20220103172052.0
024 7 _ |a 10.1016/j.agsy.2021.103278
|2 doi
024 7 _ |a 0308-521X
|2 ISSN
024 7 _ |a 1873-2267
|2 ISSN
024 7 _ |a 2128/29154
|2 Handle
024 7 _ |a altmetric:113886675
|2 altmetric
024 7 _ |a WOS:000701028300010
|2 WOS
037 _ _ |a FZJ-2021-03808
082 _ _ |a 640
100 1 _ |a Hao, Shirui
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637849403_22715
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CONTEXTProcess-based crop models provide ways to predict crop growth, evaluate environmental impacts on crops, test various crop management options, and guide crop breeding. They can be used to explore options for mitigating climate change impacts when combined with climate projections and explore mitigation of environmental impacts of production. The Agricultural Production Systems SIMulator (APSIM) is a widely adopted crop model that offers modules for simulation of various crops, soil processes, climate, and grazing within a modelling system that enables robust addition of new components.OBJECTIVEThis study uses APSIM Classic-Wheat as an example to examine yield prediction accuracy of biophysically based crop yield modelling and to analyse the factors influencing the model performance.METHODSWe analysed yield prediction results of APSIM Classic-Wheat from 76 published studies across thirteen countries on four continents. In addition, a meta-database of modelled and observed yields from 30 studies was established and used to identify factors that influence yield prediction uncertainty.RESULTS AND CONCLUSIONSOur analysis indicates that, with site-specific calibration, APSIM predicts yield with a root mean squared error (RMSE) smaller than 1 t/ha and a normalised RMSE (NRMSE) of about 28%, across a wide range of environmental conditions for independent evaluation periods. The results show increasing errors in yield with limited modelling information and adverse environmental conditions. Using soil hydraulic parameters derived from site-specific measurements and/or tuning cultivar parameters improves yield prediction accuracy: RMSE decreases from 1.25 t/ha to 0.64 t/ha and NRMSE from 32% to 14%. Lower model accuracy was found where APSIM overestimates yield under high water deficit condition and when it underestimates yield under nitrogen limitation. APSIM severely over-predicts yield when some abiotic stresses such as heatwaves and frost affect the crop growth.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ryu, Dongryeol
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Western, Andrew
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Perry, Eileen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 4
|u fzj
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 5
|u fzj
773 _ _ |a 10.1016/j.agsy.2021.103278
|g Vol. 194, p. 103278 -
|0 PERI:(DE-600)1495825-9
|p 103278 -
|t Agricultural systems
|v 194
|y 2021
|x 0308-521X
856 4 _ |u https://juser.fz-juelich.de/record/897475/files/AGSY-D-21-00531.pdf
|y Published on 2021-09-22. Available in OpenAccess from 2023-09-22.
909 C O |o oai:juser.fz-juelich.de:897475
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Melbourne University
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Melbourne University
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Melbourne University
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Melbourne University
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGR SYST : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21