
 

 1 

Performance of a wheat yield prediction model and factors influencing the 1 

performance: A review and meta-analysis 2 

Shirui Hao1, Dongryeol Ryu1, Andrew Western1, Eileen Perry2,1, Heye Bogena3, Harrie Jan Hendricks 3 
Franssen3 4 

1 Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of 5 
Melbourne 6 

2 Agriculture Victoria, Department of Jobs, Precincts and Regions 7 

3 Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Forschungszentrum Jülich 8 

 9 

Abstract 10 

CONTEXT: Process-based crop models provide ways to predict crop growth, evaluate environmental 11 

impacts on crops, test various crop management options, and guide crop breeding. They can be used to 12 

explore options for mitigating climate change impacts when combined with climate projections and 13 

explore mitigation of environmental impacts of production. The Agricultural Production Systems 14 

SIMulator (APSIM) is a widely adopted crop model that offers modules for simulation of various crops, 15 

soil processes, climate, and grazing within a modelling system that enables robust addition of new 16 

components. 17 

OBJECTIVE: This study uses APSIM Classic-Wheat as an example to examine yield prediction 18 

accuracy of biophysically based crop yield modelling and to analyse the factors influencing the model 19 

performance. 20 

METHODS: We analysed yield prediction results of APSIM Classic-Wheat from 76 published studies 21 

across thirteen countries on four continents. In addition, a meta-database of modelled and observed 22 

yields from 30 studies was established and used to identify factors that influence yield prediction 23 

uncertainty. 24 

RESULTS AND CONCLUSIONS: Our analysis indicates that, with site-specific calibration, APSIM 25 

predicts yield with a root mean squared error (RMSE) smaller than 1 t/ha and a normalised RMSE 26 

(NRMSE) of about 28%, across a wide range of environmental conditions for independent evaluation 27 

periods. The results show increasing errors in yield with limited modelling information and adverse 28 

environmental conditions. Using soil hydraulic parameters derived from site-specific measurements 29 

and/or tuning cultivar parameters improves yield prediction accuracy: RMSE decreases from 1.25 t/ha 30 

to 0.64 t/ha and NRMSE from 32% to 14%. Lower model accuracy was found where APSIM 31 

overestimates yield under high water deficit condition and when it underestimates yield under nitrogen 32 
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limitation. APSIM severely over-predicts yield when some abiotic stresses such as heatwaves and frost 33 

affect the crop growth. 34 

SIGNIFICANCE: This paper uses APSIM-Wheat as an example to provide perspectives on crop model 35 

yield prediction performance under diff erent conditions covering a wide spectrum of management 36 

practices, and environments. The findings deepen the understanding of model uncertainty associated 37 

with different calibration processes or under various stressed conditions. The results also indicate the 38 

need to improve the model’s predictive skill by filling functional gaps in the wheat simulations and by 39 

assimilating external observations (e.g., biomass information estimated by remote sensing) to adjust the 40 

model simulation for stressed crops. 41 

Keywords: Cropping system, APSIM Classic, wheat, yield prediction performance, meta-analysis, 42 

literature review 43 

1. Introduction 44 

Biophysical models, as agricultural simulation systems, are widely used to simulate crop growth, test 45 

management options, assess environmental trade-off s, and explore ways to cope with climate change 46 

impacts. The key strength of process-based biophysical models is their embodiment of our 47 

understanding of the dynamic interactions among crop, soil, water, atmosphere and solar radiation 48 

within the agricultural system (Horie et al., 1992). In essence, they simulate the biological and physical 49 

processes linking environmental eff ects to crop yield outcomes (Roberts et al., 2017). These models 50 

can assist in quantifying the impacts of changing climate on crop yield, designing efficient management 51 

practices, and informing crop breeding to secure food production. But deficiencies in the models and 52 

their implementations (e.g., calibration and weather inputs) can introduce random or systematic errors 53 

leading to uncertain yield predictions. While current efforts are underway to improve biophysical 54 

schemes, model inputs and implementation, understanding the current state of process-based model 55 

performance and sources of uncertainty can guide us to more effective strategies. 56 

There exist several widely used process-based crop models that include Agricultural Production System 57 

SIMulator (APSIM) (Brown et al., 2018; Holzworth et al., 2014; Keating et al., 2003; McCown et al., 58 

1996, 1995), Simulateur mulTIdisciplinaire pour les Cultures Standard (STICS) (Brisson et al., 2003, 59 

2002, 1998), Environmental Policy Integrated Climate (EPIC) (Williams et al., 1989), The Soil & Water 60 

Assessment Tool (SWAT) (Neitsch et al., 2011), Decision Support System for Agrotechnology Transfer 61 

(DSSAT) (Jones et al., 2003), WOrld FOod STudies (WOFOST) (Van Diepen et al., 1989; van Ittersum 62 

et al., 2003), Soil Water Atmosphere Plant (SWAP) (Van Dam et al., 1997) and AquaCrop (Hsiao et 63 

al., 2009; Raes et al., 2009; Steduto et al., 2009). This work focuses on APSIM Classic as an example 64 

to explore a biophysical model’s performance in predicting yield and the factors influencing the 65 

performance.  66 
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APSIM has been used for research and practical applications globally for over 25 years. It is also 67 

available as an online commercial agricultural decision-support tool, named Yield Prophet®, to serve 68 

Australian growers (Carberry et al., 2009; Hochman et al., 2009b). APSIM consists of interconnected 69 

modules describing the biophysical roles of soil water, soil nutrients, organic matter, crops, weather, 70 

and management. It can simulate various crop types and pastures. Simulated crops include wheat 71 

(Asseng et al., 2000, 1998a), maize (Archontoulis et al., 2014; Shamudzarira and Robertson, 2002), 72 

canola (Robertson and Lilley, 2016) and various legumes (Robertson et al., 2002). Previous studies 73 

have used it as a tool to reproduce the biophysical processes of the cropping system from paddock to 74 

regional level (Araya et al., 2020; Gaydon et al., 2006; Keating et al., 2002), including representing the 75 

role of soils (Connolly et al., 2002; Probert and Dimes, 2004; Thorburn et al., 2001), the influence of 76 

climate (Asseng et al., 2015; Bahri et al., 2019), and animal grazing (Bosi et al., 2020; Holzworth et al., 77 

2014).  It has also been used to guide genotype design of future cultivars (Rötter et al., 2015) and to 78 

understand genotype, environment and management interactions (Casadebaig et al., 2016; Hammer et 79 

al., 2010; Manschadi et al., 2006; Martre et al., 2015a; Zheng et al., 2015). Researchers have also 80 

combined APSIM with various climate projection models to investigate future food security challenges 81 

and explore solutions to mitigate environmental impacts on production (Akinseye et al., 2020; Anwar 82 

et al., 2020; Asseng et al., 2011, 2004; Liu et al., 2016a; Ludwig and Asseng, 2006).  It has been coupled 83 

with economic models to develop profit maximisation strategies and to study the eff ectiveness of crop 84 

insurance (Hansen et al., 2009; Van Wijk et al., 2014). As a cropping system tool, the accuracy and 85 

uncertainty of APSIM simulations under different environmental and input resources conditions are 86 

important to model users, as they need to be aware of the uncertainty in model outputs under the 87 

circumstances of their interest. 88 

Globally, wheat is the fourth most-produced crop and provides 20% of the calories consumed by people 89 

(FAO, 2020; Shiferaw et al., 2013). APSIM-Wheat yield prediction accuracy has been extensively 90 

evaluated for research applications and as a decision support tool for farmers. In addition to evaluations 91 

of APSIM-Wheat at field or regional scales with particular management practices or wheat cultivars, 92 

several APSIM developers and researchers have also collected assessment datasets covering a broader 93 

spectrum of management practices, environments, and cultivars to analyse model strengths, weaknesses 94 

and identify aspects for further development. An extensive set of the model validation data and 95 

descriptions are available on the APSIM website (https://www.apsim.info/). Holzworth et al. (2011) 96 

presented part of the wheat final yield validation results from those datasets, reporting a coefficient of 97 

determination (R2) of 0.93 and root mean squared error (RMSE) of 0.46 t/ha. Brown et al. (2014) 98 

compared the predicted against observed yields for 164 simulations under a wide range of environments 99 

and treatments, resulting in an R2 =0.92. Gaydon et al. (2017) reviewed APSIM performance across 100 

various cropping systems in Asia and identified its strengths and weaknesses with 43 experimental 101 

datasets from 12 countries. They concluded that the model could be further improved in aspects related 102 
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to harsh environments, conservation agriculture and low input systems. Brown et al. (2018) validated 103 

the model with experimental datasets from 8 countries covering a broad range of crop treatments. The 104 

results demonstrated that the model performed well overall with an R2≥0.84 and Nash-Sutcliff e 105 

Efficiency (NSE)≥0.81. 106 

While extensive work has been done to evaluate the model yield prediction accuracy, factors that affect 107 

the model’s yield prediction uncertainty remain to be investigated comprehensively. In general, model 108 

prediction uncertainty originates from deficient/inaccurate model structure, input forcing data, 109 

parameter specification and observations used for model calibration/validation (Vrugt et al., 2008). In 110 

this paper, we review and quantify APSIM Classic (which hereafter is referred to as “APSIM”)-Wheat 111 

yield prediction accuracy by compiling existing evaluation datasets from the literature and analysing 112 

the contribution of environmental and input resource factors to the model prediction uncertainty. The 113 

objective of the study is to review the performance of process-based crop model yield prediction and 114 

identify influential factors affecting prediction accuracy, with APSIM-Wheat used as an example. 115 

Firstly, an overview of the APSIM-Wheat yield prediction accuracy and uncertainty is provided by 116 

collating the model evaluation results from published studies. Next, a meta-analysis based on existing 117 

literature is performed to identify the factors influencing uncertain yield prediction, which include 118 

model specification and calibration, heat and frost stresses, water and nitrogen availability. The 119 

uncertainties in yield prediction associated with the above-mentioned factors are discussed. Finally, 120 

suggestions are provided for improving the accuracy of crop models such as APSIM-Wheat prediction 121 

under circumstances of high prediction uncertainty. 122 

2. Review of APSIM-Wheat model evaluation 123 

2.1. Overview of the APSIM Classic and Wheat module 124 

APSIM is an agricultural modelling platform equipped with various biophysical and management 125 

modules to simulate cropping systems (Holzworth et al., 2014; Keating et al., 2003). The model is 126 

composed of multiple modules that simulate soil water, nutrients (carbon, nitrogen, and phosphorus), 127 

and crop growth processes under different environmental and management conditions. For example, 128 

the SoilWat (Jones and Kiniry, 1986; Littleboy et al., 1992) calculates soil water movement using a 129 

cascading water balance model, and it is used by most APSIM users (all studies reviewed in this work 130 

used SoilWat). Soil Water Infiltration and Movement (SWIM) is another option to simulate the soil-131 

water-solute balance based on Richards’ equation and the advection-dispersion equation, but is not 132 

adopted by most model users. The SoilN module simulates the transformations of carbon and nitrogen 133 

in the soil. SoilWat and SoilN interact with each other and together provide plant available soil water 134 

and nitrogen information to the Wheat module (Zheng et al., 2014) for simulating crop growth. The 135 

Wheat module simulates phenological development, plant morphology, biomass and nitrogen 136 



 

 5 

concentration of different wheat components, grain number and grain size on a daily basis (Keating et 137 

al., 2001). Here we use APSIM-Wheat to collectively represent the wheat growth simulation model 138 

which consists of the required APSIM modules including SoilWat, SoilN, and Wheat. A detailed 139 

description of the Wheat module is provided by Zheng et al. (2014). We only provide an overview of 140 

the stress factors considered in Wheat since they are used to better understand the factors influencing 141 

yield prediction performance. 142 

Water stress: The Wheat module accounts for water stress impacts in simulating photosynthesis and 143 

leaf expansion. The influence on photosynthesis (𝑓𝑊_𝑝ℎ𝑜𝑡𝑜) and leaf expansion (𝑓𝑊_𝑒𝑥𝑝𝑎𝑛) is calculated 144 

as follows: 145 

𝑓𝑊_𝑝ℎ𝑜𝑡𝑜 =
𝑊𝑢
𝑊𝑑

, (1) 146 

𝑓𝑊_𝑒𝑥𝑝𝑎𝑛 = ℎ𝑤_𝑒𝑥𝑝𝑎𝑛 ×
𝑊𝑢
𝑊𝑑

, (2) 147 

where 𝑊𝑢 and 𝑊𝑑 are crop water uptake and water demand, respectively, and ℎ𝑤_𝑒𝑥𝑝𝑎𝑛 is a water stress 148 

factor piecewise linearly related to 𝑊𝑢/𝑊𝑑. Smaller 𝑊𝑢/𝑊𝑑 results in a smaller ℎ𝑤_𝑒𝑥𝑝𝑎𝑛 value. So, 149 

equation (2) is effectively a quadratic function of  𝑊𝑢/𝑊𝑑. Equations (1) and (2) indicate that both 150 

biomass accumulation and leaf expansion are scaled by the ratio of total daily water uptake to crop 151 

water demand, with leaf expansion more sensitive to the water stress. 152 

Nitrogen stress: The Wheat module accounts for nitrogen stress on phenology (not applied), biomass 153 

accumulation, leaf appearance and expansion, and grain filling. The stress for these aspects is 154 

determined by the diff erence between organ nitrogen concentration and minimum and critical nitrogen 155 

concentration. 156 

Heat stress: The Wheat module takes temperature as a factor aff ecting the crop into account in many 157 

ways (Zheng et al., 2014). The daily maximum temperature is considered as the temperature stress in 158 

calculating LAI senescence. The daily mean temperature (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2 is considered as the stress 159 

factor aff ecting wheat growth in (1) crop phenology via the thermal time; (2) root depth growth; (3) 160 

biomass accumulation; (4) biomass demand of grain and the rate of grain filling. 161 

Frost stress: The Wheat module incorporates the leaf area senescence effect using a frost stress function; 162 

however, the default parameterisation of the stress factor results in zero impact during the whole 163 

simulation, which means it is not in application. 164 

2.2. Literature search and selection criteria 165 
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We performed a literature search for peer-reviewed journal articles focused on APSIM-Wheat 166 

performance evaluation using Scopus, ISI Web of Science and Google Scholar. The following 167 

keywords in English were employed to search the literature: APSIM, wheat, Triticum aestivum, yield 168 

prediction, validation, evaluation, verification, and performance. A total of 108 articles published 169 

between September 1997 and February 2020 are reviewed. Among these, only the 76 articles that 170 

included independent validation datasets (independent growing seasons/fields from calibration) of 171 

APSIM-Wheat grain yield prediction using in situ yield data at field scale are used for the meta-analysis 172 

of APSIM-Wheat yield uncertainty. The APSIM-Wheat validation datasets from these papers are across 173 

thirteen countries in four continents, including Australia (41 studies), New Zealand (2 studies), United 174 

States of America (1 study), Belgium (1 study), The Netherland (1 study), Turkey (1 study), China (20 175 

studies), India (3 studies), Pakistan (2 studies), Syria (1 study), Iran (2 studies), Ethiopia (3 studies), 176 

Tunisia (1 study) (some papers include locations from several countries, Figure 1). The evaluation sites 177 

cover a broad range of environmental and management conditions such as extreme temperatures, 178 

diff erent water and nutrient availability situations, various soil types and hydraulic conditions. 179 

 180 

Figure 1. Number of articles for each country (the dataset of United States of America is in the 181 
conterminous United States) 182 

 183 

2.3. APSIM-Wheat calibration and evaluation metrics 184 

The model evaluation datasets in reviewed papers contain calibration and validation processes. Here 185 

calibration refers to all processes to improve the model fit to data, while validation refers to testing 186 

models against independent data not used in calibration to ensure the rigour of the model evaluation. In 187 
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model calibration, variables that are related to crop growth, such as physiological dates, leaf area index 188 

(LAI), biomass, yield or soil water content and evapotranspiration are typically considered as the 189 

benchmarks for calibration and validation. Based on different data sources used, three calibration (or 190 

parameter setting) methods were defined in this paper: (1) Manual/automatic tuning of parameters to 191 

make the model simulations better fit the observations; (2) Direct specification of parameters using field 192 

measurements of these parameters; (3) Parameter specification using available databases (e.g., APSoil) 193 

or estimated data such as estimating lower limits from soil texture. The first two methods are 194 

collectively referred to as a fully site-specific calibration. If only one of them is adopted, it is partially 195 

site-specific calibration. The third method is classified as non-site-specific calibration (Table 1). 196 

Table 1. Calibration methods defined in this paper 197 

Manual tuning of parameters 
Site-specific calibration 

Parameter specification using ground observations. 

Parameter specification using APSoil or estimated data. Non-site-specific calibration 

 198 

Many researchers specify the specific cultivar used in the simulation or manually adjust genetic 199 

parameters, especially those controlling wheat phenology and yield development by trial-and-error to 200 

improve the model predictions against field observations. The genetic parameters used to characterise 201 

the cultivar are summarised in Table 2. The reported calibrated values of these parameters are 202 

summarised in Supplementary Table S1. Some coefficients listed in Supplementary Table S1 were 203 

derived from results for multiple soil types, sowing dates, sites, and growing seasons, which should 204 

help ensure the model robustness.  205 

Table 2. Definition of the genetic parameters 206 

Generic parameter name Unit Definition 

tt_end_of_juverile °C 
The thermal time from end of juvenile to terminal 

spikelet stage 

tt_floral_initiation °C The thermal time target for floral initiation 

tt_flowering °C The thermal time target for flowering 

tt_start_grain_fill °C The thermal time target to start grain filling stage 

tt_end_grain_fill °C The thermal time target to end grain filling stage 

tt_startgf_to_mat °C 
The thermal time target from beginning of grain 

filling to maturity 

potential_grain_filling_rate g/(grain °Cd) Potential grain filling rate 

grain_per_gram_stem grain Numbers of grain per gram stem 

max_grain_size g Maximum grain size 

vern_sens N/A Sensitivities to vernalisation 

photop_sens N/A Sensitivities to photoperiod 

phyllochron °Cd Phyllochron interval 

 207 
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Soil parameters such as soil texture, soil hydraulic, and chemical parameters were usually specified in 208 

studies using laboratory test data (soil samples were taken from study fields), APSoil soil database 209 

(Dalgliesh et al., 2012, 2009), semblable objects or estimated data, such as estimating lower limits from 210 

soil texture (Sadras et al., 2003). 211 

 212 

Several statistical criteria are commonly selected to evaluate model performance: the coefficient of 213 

determination (R2), root mean square error (RMSE, also referred to as root mean square difference, 214 

RMSD), normalised RMSE (NRMSE), model efficiency (EF), and/or index of agreement (d) defined as:  215 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

, (3) 216 

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/𝑂, (4) 217 

𝐸𝐹 = 1 −
∑ (𝑃𝑖 −𝑂𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 −𝑂)
2

𝑁
𝑖=1

, (5) 218 

𝑑 = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑁
𝑖=1

∑ (|𝑃𝑖 − 𝑂| + |𝑂𝑖 − 𝑂|)
2

𝑁
𝑖=1

, (6) 219 

where 𝑃𝑖 and 𝑂𝑖 represent ith predicted and observed values, respectively, 𝑂 the mean observed values, 220 

and N the sample size. R2 measures the goodness-of-fit of a linear relationship between simulated and 221 

observed values, and hence ignores model bias.  R2 is also sensitive to the variance of the samples. 222 

RMSE and NRMSE represent the mean diff erence of predictions and observations, and they include 223 

measures of both bias and random errors.  EF and d assess the degree of model prediction and are 224 

similar to R2, except they are influenced by both bias and random errors. The index of agreement d is 225 

normalised by a measure of combined spread in observations and predictions, while EF (and R2) are 226 

normalised by the spread in observations. The model reproduces experimental data perfectly when R2=1, 227 

RMSE=0, NRMSE=0, EF=1 and d=1. 228 

 229 

2.4. APSIM-Wheat yield prediction performance 230 

Table 3 presents basic information on each paper validation datasets – reference, APSIM version, 231 

location, year, cultivar, environmental conditions, treatments, APSIM performance, and main model 232 

application. All reviewed works used APSIM Classic (version 1.X – version 7.9). The model has been 233 
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applied mostly at plot or paddock, and sometimes regional, scales as a cropping system tool solely to 234 

assess the environmental impacts on food production, or combined with other models (e.g., climate 235 

projection models, economic models) to investigate future food security challenges and explore 236 

solutions or to develop profit maximisation strategies and study the eff ectiveness of crop insurance. A 237 

full version of  Table 3 with detailed information is shown in Supplementary Table S2.  238 
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Table 3. List of validation datasets from the literature used in this study (P(gs): growing season rainfall; P(yr): average annual rainfall; P(t): total annual 

rainfall; T(gs): growing season temperature; Tg(yr): average annual temperature; Tx: annual maximum temperature; Tn: annal minimum temperature; 

SWC: soil water content; ESW: extractable soil water; ET: evapotranspiration; N: nitrogen fertiliser; DC31: wheat growth stage code, stem elongation; 

DC65: anthesis; * Data were used to compose the meta-database for further analysis in Section 3) 

Dataset 

No. 
Reference 

APSIM 

version 
Location Years Cultivar 

Environmental 

conditions 
Treatments APSIM performance Application 

1 
(Probert et 

al., 1995) 
1.X 

Warwick, 

Queensland, 

Australia 

1969-1992 

Timgalen 

(1969-1974, 

1978-1981), 

Cook (1983-

1984), Kite 

(1985-1987), 

Hartog (1990), 

QT4118 (1992) 

In some seasons, 

crops suffered from 

diseases like root-

lesion nematodes 

and crown rot. 

2 tillage 

managements: 

conventional, no 

tillage. 2 crop 

residue 

managements: 

stubble burned, 

retained. 3 N 

application rates: 

0, 23, 69 kg N/ha 

Yield-RMSE=0.937 t/ha, 

R2=0.30. 

Model 

development 

and validation 

2 
(Probert et 

al., 1998) 
1.X 

Gatton, 

Queensland, 

Australia 

1992-1995 N/A N/A 

A range of 

nitrogen inputs 

and under 

different moisture 

regimes. 

Predicted yield = 1.03 * 

observed yield - 0.27 

(t/ha), R2=0.78. 

Model 

evaluation 

3 
(Asseng et 

al., 1998b) 
NWheat 

Beverley, 

Merredin, 

Moora, and 

Wongan Hills, 

Western 

Australia, 

Australia 

Beverley 

(1990-1993), 

Merredin 

(1973, 1986), 

Moora (1994-

1995), 

Wongan Hills 

(1983, 1994) 

Dagger, 

Gamenya, 

Gutha, Kulin, 

Spear 

Beverley: P(yr)=421 

mm, P(gs)=352 mm, 

soil type: duplex. 

Merredin: P(yr)=310 

mm, P(gs)=234 mm, 

soil type: duplex. 

Moora: P(yr)=458 

mm, P(gs)=388 mm, 

soil type: deep sand. 

Wongan Hills: 

P(yr)=386 mm, 

P(gs)=318 mm, soil 

type: loamy sand. 

Different nitrogen 

supply, irrigation, 

sowing date, 

sowing density, 

and deep ripping. 

Observed yield range=1.0 

to 4.0 t/ha, R2=0.77, 

RMSD=0.4 t/ha. Observed 

biomass range=0.1 to 11.0 

t/ha, R2=0.90, RMSD=0.8 

t/ha. Observed LAI 

range=0 to 3.8 m2/m2, 

R2=0.59, RMSD=0.6 

m2/m2. 

Model 

evaluation 

4 
(Asseng et 

al., 1998a) 
NWheat 

Moora, 

Western 

Australia, 

Australia 

1994-1995 Spear 

Deep sand, 

P(yr)=459 mm, 

ranged from 203 to 

790 mm. 

N treatments of 0, 

50, and 90 kg 

N/ha. 

Discrepancies between 

observed and predicted 

yields are less than 0.4 

t/ha. 

Establish the 

probability of 

yield 

5 
(Asseng et 

al., 2000) 
NWheat 

The Eest, 

PAGV, The 
1983-1984 Arminda 

The Eest and 

PAGV: Soil type: 

silty loam, 

N applications: 

The Eest: 0, 60, 

110, 150, 160 kg 

Observed yield range=0.4 

to 8.3 t/ha, R2=0.90, 

RMSD=0.8 t/ha. Observed 

Explore the 

relationship 

between yield 
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Bouwing, The 

Netherland 

P(yr)=646 mm. The 

Bouwing: soil type: 

silty clay loam, 

P(yr)=763 mm. 

N/ha. PAGV: 80, 

140, 180, 240 kg 

N/ha. The 

Bouwing: 0, 60, 

70, 160, 170, 230 

kg N/ha. 

biomass range=0.03 to 20 

t/ha, R2=0.97, RMSD=1.2 

t/ha. Observed LAI 

range=0 to 5.5 m2/m2, 

R2=0.65, RMSD=1.2 

m2/m2. 

and N-fertiliser 

application 

6 
(Fisher et 

al., 2001) 
NWheat 

Balla, Wongan 

Hills, 

Merredin, East 

Beverley, 

Katanning, 

Newdegate, 

Esperance, 

and Salmon 

Gums, 

Western 

Australia, 

Australia 

1989-1992 Spear, Kulin 

Wongan Hills: 

based on 1900-1999 

historical weather 

data, the weather 

was dominated by 

summer 

rainfall<=45 mm, 

P(t)<=390 mm, 

early season (April 

to May) <=140 

(n=46) and summer 

rainfall>45 mm, 

P(t)>390 mm, early 

season>140 (n=47). 

N treatment of 

150 kg N/ha as 90 

kg at sowing and 

60 kg 4 weeks 

after sowing. 

Total of 111 

sowing dates 

between 9th April 

and 19th July. 

Spear: dates of anthesis-

RMSD=12.1days, 

R2=0.76, bias=-1.0%. 

Kulin: dates of anthesis-

RMSD=9.5days, R2=0.86, 

bias=1.4%. 

Provide 

information on 

choice of 

cultivar and 

sowing date 

7 
(Asseng et 

al., 2001) 
NWheat 

Moora, 

Wongan Hills, 

Merredin, 

Western 

Australia, 

Australia 

Up to 87 

continuous 

years. 

Spear, Amery 

Sand (PAWC=55 

mm), clay soil 

(PAWC=109 mm). 

Moora: P(yr)=461 

mm, P(gs)=392 mm 

(mean), 165 to 648 

mm (range). 

Wongan Hills: 

P(yr)=386 mm, 

P(gs)=322 mm 

(mean), 112 to 535 

mm (range). 

Merredin: P(yr)=310 

mm, P(gs)=235 mm 

(mean), 102 to 418 

mm (range). 

N treatments of 0, 

30, 60, 90, 150, 

210 kg N/ha. 

Three sowing 

dates: DOY 135 

(15 May), DOY 

155 (4 June), 

DOY 175 (24 

June). 

The yield in the 

Mediterranean climatic 

region of Western 

Australia depends on soil 

water-holding capacity, 

nitrogen management, 

rainfall amount and 

especially, seasonal 

rainfall distribution. 

Explore the 

water- and 

nitrogen-use 

efficiency 

8 
(Asseng et 

al., 2002) 
NWheat 

New South 

Wales, 

Australia; 

Wongan Hills 

and 

Cunderdin, 

Western 

1997 

(Western 

Australia) 

Spear, Amery 

Wongan Hills: 

P(yr)=391 mm, soil 

types: sand 

(PAWC=55 mm). 

Cunderdin: 

P(yr)=367 mm, soil 

type: clay 

N treatments of 0, 

30, 60, 90 kg 

N/ha at Wongan 

Hills experiment. 

Western Australia: grain 

protein-RMSD=1.9 to 

2.0%. New South Wales: 

the model slightly 

overestimated grain 

protein which was mainly 

Model 

development 

and validation 
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Australia, 

Australia 

(PAWC=109 mm). 

New South Wales: 

P(yr)=436, 536 mm, 

soil types: loam 

(PAWC=159 mm). 

due to an overestimation in 

available nitrogen. 

9 
(Lilley et al., 

2003) 
2.1 

Harden (HD) 

and 

Condobolin 

(CDBL), 

NSW, 

Australia 

1989-2000 

(HD), 1991-

1993 (CDBL) 

Janz (HD), 

Rosella and 

Dollarbird 

(CDBL) 

HD: Red earth. 

P(gs)=179 to 539 

mm. Tg(yr)=14.7°C. 

PAWC=145 mm. 

CDBL: Red brown 

earth. P(gs)= 234, 

341 and 324 mm, 

Tg(yr)=17.5°C, 

PAWC=169 mm. 

HD: N treatments 

of 22, 23, 97, 110, 

114, 130 kg N/ha) 

CDBL: N 

treatments of 10 

and 25 kg N/ha 

Corresponded well in 

dynamics other than in 

1991, model failed to 

capture the effects of 

environmental stresses and 

overestimate yield and 

biomass. 

Model 

evaluation 

10 
(Sadras et 

al., 2003)* 
N/A 

Mallee region 

of 

Southeastern, 

Australia, 

Australia 

1998-2002 Hartog 

Sandy regolithic, 

hypocalcic, 

calcarosols. 

P(gs)=218 to 

351mm. maximum 

temperature=18 to 

19.5°C. 

N applied, no 

nitrogen stress. 

When field-measured soil 

water properties were 

used, model simulations 

improved: yield-RMSE 

from 0.31 to 0.19 t/ha, R2 

from 0.60 to 0.74; SWC-

RMSE from 2.1*10-3 

cm3/cm3 to 9.3*10-4 

cm3/cm3, R2 from 0.47 to 

0.72. 

Quantify the 

effect of 

environmental 

factors 

11 
(Wang et al., 

2003)* 
N/A 

Queensland 

and Western 

Australia, 

Australia 

1987-1995 
Five local 

varieties 

Soil types: duplex, 

deep sand, loamy 

sand. 

Four nitrogen 

treatments, some 

with water or 

residue treatments 

yield-RMSD=0.74 t/ha, 

R2=0.80; biomass-

RMSD=1.62 t/ha, 

R2=0.82. Could 

explain >80% of the total 

biomass/yield/maximum 

LAI variations. 

Model 

evaluation 

12 
(Asseng et 

al., 2004) 
NWheat 

Obregon, 

Mexico; 

Maricopa, 

USA; Lincoln, 

New Zealand; 

Wongan Hills 

and 

Cunderdin, 

Western 

Australia, 

Australia 

1989-1990 

and 1994-

1995 

(Obregon); 

1991 

(Lincoln); 

1997 

(Western 

Australia); 

1992-1994, 

1995-1997 

(Maricopa) 

Yecora70, 

Batten, Amery, 

Wilgoyne, 

Spear 

Clay loam, sandy 

loam, sand, and 

clay. 

Rising 

temperature 

(Obregon), 

increased levels 

of water deficit 

(Lincoln), late 

water deficit 

(Western 

Australia), 

elevated 

atmospheric CO2 

(Maricopa). 

Obregon: yield-

RMSD=1.0 t/ha, biomass-

RMSD=2.8 t/ha; Lincoln: 

yield-RMSD=1.2 t/ha, 

biomass-RMSD=1.9 t/ha, 

R2=0.90, LAI-RMSD=1.3 

m2/m2, R2=0.53; Western 

Australia: yield-

RMSD=0.5 t/ha, R2=0.77, 

biomass-RMSD=1.1 t/ha, 

R2=0.86; Maricopa: yield-

RMSD=1.1 t/ha, R2=0.72, 

Analyse the 

climate change 

impacts on yield 
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biomass-RMSD=1.6 t/ha, 

R2=0.94, LAI-RMSD=0.9 

m2/m2, R2=0.73. 

13 
(Yunusa et 

al., 2004) 
1.4 Patch 2 

Roseworthy, 

Minnipa, and 

Wunkar, 

South 

Australia, 

Australia 

1995-1996 

(Roseworthy), 

1997 

(Minnipa, 

Wunkar) 

Janz 

(Roseworthy, 

Minnipa, 

Wunkar), 

Excalibur 

(Roseworthy) 

Roseworthy: 

P(yr)=420 mm, 

P(gs)=320 mm, Tx 

and Tn=8.2 and 

18.8°C. Soil: red 

brown earth. 

Minnipa: P(gs)=230 

mm, Tx and Tn=7.9 

and 19.1°C. Soil: 

sandy loam topsoil 

underlayed by 

calcareous subsoil. 

Wunkar: P(gs)=170 

mm, Tx and Tn=5.5 

and 18.8°C. Soil: 

loamy sand, grading 

into calcareous 

sandy clay and 

heavy clay. 

Roseworthy: N 

treatments of 0, 

50, 75, 100 kg 

N/ha. 

Yield- RMSD=0.447 t/ha, 

R2=0.69; grain weight 

RMSD=7.0 mg, R2=0.31; 

grain protein 

RMSD=5.7%, R2=0.03. 

Evaluate yield 

response to 

environmental 

factors 

14 
(Luo et al., 

2005) 
2.0 

Cummins, 

Keith, 

Lameroo, 

Minnipa, 

Naracoorte, 

Orroroo, 

Roseworthy, 

and Wanbi, 

South 

Australia, 

Australia 

Continuous 

100 years 
Janz, Excalibur 

Cummins, Keith, 

Naracoorte, and 

Roseworthy: wetter 

climates with 

P(yr)=430 to 580 

mm, P(gs)=292 to 

397 mm. The other 

four sites: drier with 

P(yr)=304 to 388 

mm, P(gs)=186 to 

251 mm. Cummins: 

clay loam, 

PAWC=140 mm. 

Keith: loamy sand, 

PAWC=76 mm. 

Lameroo: fine sandy 

loam, PAWC=111 

mm. Minnipa: sandy 

loam, PAWC=157 

mm. Naracoorte: 

sandy clay loam, 

Fertilised to 

ensure no 

nitrogen stress. 

Changing rainfall, 

temperature, and 

CO2 

concentration 

conditions. 

Rainfall is by far the most 

influential factor on 

change in median grain 

yield in the medium to low 

rainfall areas. 

Analyse the 

climate change 

impacts on yield 



 

 14 

PAWC=125 mm. 

Orroroo: sandy 

loam, PAWC=134 

mm. Roseworthy: 

loam, PAWC=122 

mm. Wanbi: sandy 

loam, PAWC=132 

mm. 

15 
(Paydar et 

al., 2005)* 
N/A 

Northern 

NSW, 

Australia 

1995-1998 N/A 

Black vertosol, 

P(yr)=684mm. The 

available moisture 

holding capacity of 

the soil is large (505 

mm to 3 m depth). 

N treatment of 

100 kg N/ha. 

The yield predictions are 

generally good for wheat, 

barley, and sorghum but 

less so for legumes. Failed 

to predict rapid increases 

in subsoil moisture. 

Quantify the 

effects of 

different 

cropping 

systems on the 

water balance 

16 
(Oliver et 

al., 2006)* 
N/A 

Buntine, 

northern 

sandplain of 

the Western 

Australia 

wheatbelt 

1997, 1999, 

2002-2005 
N/A 

P(yr)<400mm, 

PAWC=32 to 

110mm, 50 kg N/ha 

in the soil profile. 

N applied from 0 

to 150 kg N/ha at 

sowing. 

Yield-RMSD=0.518 t/ha. 

Explore the 

importance of 

PAWC as a 

driver of yield 

variation 

17 
(Hunt et al., 

2006)* 

Yield 

Prophet 

338 paddocks 

of 236 

growers in 

Australia 

1997, 1999, 

2002-2005 
N/A N/A N/A 

Paddocks with appropriate 

measured soil 

characterisation and soil 

profile samples: R2=0.68, 

68% of simulated results 

were within 0.5 t/ha. 

Paddocks without 

appropriate soil 

information: R2=0.54, 49% 

of simulated results were 

within 0.5 t/ha. 

Explore the 

importance of 

PAWC as a 

driver of yield 

variation 

18 

(Wong and 

Asseng, 

2006) 

NWheat 

Three Springs, 

Western 

Australia 

1998-2002 

Blade, 

Brookton, 

Carnamah 

P(yr)=445 mm, of 

which 370 mm falls 

in growing season 

(May to October). 

N treatments of 0, 

60, 150 and 210 

kg N/ha 

Yield-RMSE=1.0 t/ha. 

Develop an 

method to use 

APSIM 

spatially 

19 
(Moeller et 

al., 2007) 
4.2 

Dry areas at 

Tel Hadya, 

northwestern 

Syria 

1998-2000 Cham3 

Semi-arid, 

continental 

Mediterranean 

climate with cool, 

wet winters and hot, 

dry summers. 

P(yr)=340mm, 

Tg(yr)=17.6 °C. 

N treatments of 0, 

60 and 100 kg 

N/ha. Irrigation: 0 

and 342 mm. 

At pre-anthesis stage, the 

model overestimated leaf-

area, nitrogen uptake and 

biomass accumulation. 

Model 

parameterisation 

and validation 
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Growing season: 

early/mid November 

to early/late May. 

Vertisol and 

Inceptisol Soil 

group. pH is around 

8. The soil organic 

matter content is 

mostly lower than 

1% in the 0 to 0.20 

m layer. 

20 
(Hochman et 

al., 2007) 
5.0 

Southern 

Queensland, 

northern NSW 

2003-2004 

Baxter, H45, 

Wollaroi, 

Yallaroi, 

Babbler, 

Hybrid Meteor, 

Strzelecki, 

Sunbrook 

PAWC=93 to 120 

mm 

No significant 

weeds, pests, 

diseases, or 

nutrient 

deficiencies 

experienced. 

When measured PAWC 

data were used, yield-

RMSD=0.5 t/ha, R2=0.82. 

When calculated instead of 

measured PAWC were 

used, yield-RMSD=0.78 

t/ha, R2=0.69. When 

calculated PAWC were 

used and kl was adjusted, 

yield-RMSD=0.53, 

R2=0.84. 

Evaluate yield 

response to 

environmental 

factors 

21 

(Lilley and 

Kirkegaard, 

2008)* 

5.0 

Gundibindyal, 

NSW, 

Australia 

2000-2004 Janz 

In-crop rainfall=440 

mm, PAWC=173 

mm. 

N treatment of 

178 kg N/ha. 

Yield-RMSD=0.4 t/ha, 

R2=0.90. 

Evaluate yield 

response to 

environmental 

factors 

22 
(Lawes et 

al., 2009) 
5.2 

Buntine, 

Western 

Australia 

1997-2005 

Calingiri, 

Brown 

manured, 

Westonia, 

Wyalkatchem 

P(yr)=300 to 400 

mm. PAWC=52 to 

131 mm. 

N applied from 

20 to 60 kg N/ha. 

Sowing dates 

ranged from 15th 

May to 2nd June. 

Yield-RMSE=0.31 t/ha, 

R2=0.86. 

Explore the 

yield-PAWC 

relationship 

23 

(Oliver et 

al., 2009) 

(assembled 

datasets) 

5.2 

Wheatbelt of 

Western 

Australia 

1996-2006 
Various 

varieties 

P(yr)=300 to 500 

mm, P(gs)=243 mm 

± 88 mm. 

PAWC=33 to 434 

mm. 

No nitrogen stress 

Yield-RMSE=0.455 t/ha, 

R2=0.78. Model slightly 

overpredicted yields. 

As a predictive 

tool benchmark 

24 
(Wang et al., 

2009)* 
5.3 

Luancheng, 

Yucheng and 

Fengqiu, NCP, 

China 

1997-2006 

Gaoyou503, 

Zhixuan1, 

Keyu13, 

Zhengmai9023 

Luancheng: 

P(yr)=481 mm. 

PAWC=335 mm. 

Yucheng: 

PAWC=341 mm. 

Fengqiu: 

PAWC=204 mm. 

Luancheng: 

Irrigated of 202 to 

404 mm. 

Yucheng: N 

treatments: 182 to 

215 kg N/ha, 

irrigated of 110, 

Yield-RMSD=0.80 t/ha, 

R2=0.66. 

Evaluate yield 

response to 

environmental 

factors 
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152, 230, 400 

mm. 

25 
(Anwar et 

al., 2009) 
5.3 

Victoria, 

Australia 
2004-2006 Yitpi 

P(yr)=354 mm, 

P(gs) (April-

October) =239 mm. 

The texture of 

surface soil varying 

from loamy sand to 

sandy clay loam and 

subsoil varying from 

sandy loam to sandy 

clay. 

N treatments of 0, 

14, 26, 50 kg 

N/ha (2004); 0, 

25, 33, 50 kg 

N/ha (2005). 

Yield-RMSE=0.31 t/ha, 

R2=0.96. 

Evaluate yield 

response to 

environmental 

factors 

26 

(Bell et al., 

2009)* 

(assembled 

datasets) 

5.4 

Western 

Australia, 

Queensland 

and New 

Zealand 

2002-2005, 

1980s-1990s 
Wyalkatchem 

P(yr)=300 to 595 

mm. Red loam, deep 

sand and shallow 

gravel. PAWC=0 to 

75 mm. 

N treatment of 

100 kg N/ha. 

Yield-RMSD=0.537 t/ha, 

biomass-RMSD=1.27 t/ha, 

which representing 18% 

and 17% of the mean 

observed values. 

Compare the 

profits of yield 

harvesting and 

sacrificing the 

crop to grazing 

27 

(Oliver and 

Robertson, 

2009) 

N/A 

Wheatbelt of 

Western 

Australia 

2004-2006 

Wyalkatchem, 

Carnamah, 

Bonnie Rock, 

Westonia, 

Yitpi, Calingiri 

P(yr)=308 to 446 

mm (P(gs)is about 

75% to 86% of 

P(yr)). PAWC=59 to 

208mm. 

N applied from 

10 to 74 kg N/ha. 

Yield-RMSE=0.538 t/ha, 

R2=0.80. 

Evaluate yield 

response to 

environmental 

factors 

28 

(Hochman et 

al., 2009a) 

(assembled 

datasets) 

Yield 

Prophet 

(based on 

APSIM 6.1) 

Australia (344 

winter wheat 

crops. Victoria 

(176), South 

Australia (75), 

New South 

Wales (43), 

Western 

Australia (38) 

and 

Queensland 

(4)) 

2004-2007 
Various 

varieties 

A range of soil 

types, from shallow 

sands (PAWC=22 

mm) to deep 

Vertosols 

(PAWC=279 mm). 

N applied from 

32 to 588 kg N/ha 

(mean=124 kg 

N/ha). Irrigated. 

Yield-RMSD=0.8 t/ha, 

R2=0.71. 

Model 

evaluation 

based on a large 

dataset from on-

farm crops 

29 

(Carberry et 

al., 2009) 

(assemble 

datasets) 

Yield 

Prophet 

Over 700 

commercial 

crops 

(wheat=495) 

in Australia 

1992-2007 
Various 

varieties 

Different sowing 

dates, soil types 
N/A 

Yield-RMSD=0.19 to 0.80 

t/ha, R2=0.52 to 0.89   

Model 

evaluation 

30 
(Chen et al., 

2010a)* 
5.1 NCP, China 2000-2001 Gaoyou503 

Loam soil, with 

texture ranging from 

sandy loam in 

surface layers to 

Urea applied of 

150 kg/ha. 

Irrigated from 80 

to 118 mm. 

The model was able to 

explain more than 90% 

yield variation. 

Explore optimal 

water 

management 

strategies 
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light/median loam at 

40 to 80 cm depth 

and to light clay 

below 80 cm. 

31 
(Chen et al., 

2010b)* 
5.3 NCP, China 

1997-2002, 

2004-2006 

Gaoyou503, 

Zhixuan1, 

Keyu13, 

Zhengmai9023 

P(yr)=481 to 615 

mm 

N applied to 

ensure no 

nitrogen stress. 

Irrigated from 0 

to 420 mm at 

critical growing 

stages. 

Yield-RMSE=0.83 t/ha, 

biomass-RMSE=1.40 t/ha. 

Evaluate yield 

response to 

environmental 

factors 

32 
(Chen et al., 

2010c)* 
5.3 NCP, China 1997-2006 Zhixuan1 

P(yr)=481 to 615 

mm 

N applied and 

irrigated (lacked 

accurate irrigation 

and fertilisation 

records). 

No significant systematic 

over- or under-estimations 

was found when predicting 

LAI, biomass and yield. 

LAI-d index=0.85, 

biomass-d=0.92, yield-

d=0.96. LAI-R2=0.61, 

biomass-R2=0.62, yield-

R2=0.88. 

Evaluate yield 

response to 

environmental 

factors 

33 

(Holzworth 

et al., 2014) 

(assembled 

datasets) 

N/A 
Assembled 

datasets 
N/A 

Various 

varieties 

Range of soil types, 

locations, sowing 

dates. 

N/A 
Yield-RMSE=0.46 t/ha, 

R2=0.93. 

Model 

development 

and validation 

34 

(Balwinder-

Singh et al., 

2011)* 

5.1 Punjab, India 2006-2008 PBW343 
Clay loam soil. 

P(gs)=88, 159 mm. 

N applied to 

ensure no 

nitrogen stress. 

With and without 

mulch. Six 

irrigation 

scheduling 

treatments, 

including 75, 150, 

225 mm. 

Mulch: yield-

RMSE=0.443 t/ha, 

NRMSE=12.4%, R2=0.91. 

Biomass-RMSE=0.3 t/ha, 

NRMSE=3.6%, R2=0.99. 

Non-mulch: yield-

RMSE=0.55 t/ha, 

NRMSE=16.5%, R2=0.86. 

Biomass-RMSE=0.8 t/ha, 

NRMSE=10.8%, R2=0.92. 

Model 

calibration and 

evaluation 

35 
(Lobell et 

al., 2012) 
N/A 

Indo-Gangetic 

Plains, India 
2000-2009 Zippy 

March and April 

have averaged 20 to 

30 days of daily 

temperature 

exceeded 34°C 

(grain filling period 

of wheat). 

Average N 

treatment of 145 

kg N/ha. 

Irrigated. 

APSIM underestimated 

potential yield losses for 

warming in the study area. 

Evaluate yield 

response to 

environmental 

factors 
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36 
(Mohanty et 

al., 2012) 
6 Bhopal, India 2002-2006 Sujata 

P(t) of 2002: 763 

mm; 2003: 1113 

mm; 2004: 863 mm; 

2005: 917 mm 

Three N 

treatments: (1) no 

nutrient added, 

(2) 100 kg/ha N, 

22 kg/ha P, 17 

kg/ha K, (3) 16 

t/ha farmyard 

manure. Irrigated 

of 80 or 240 mm. 

SWC-R2=0.71 to 0.88. 

The model realistically 

predicted yield and 

nitrogen uptake. 

Model 

calibration and 

evaluation 

37 
(Zhang et 

al., 2012) 
6.1 

Shangzhuang, 

Quzhou, 

Huangfanqu, 

at NCP, China 

2009-2010 

Nongdan211, 

Han6172, 

Yanzhan4110 

Shangzhuang: 

P(yr)=104, 114 mm, 

Tg(yr)=8.0, 5.9°C. 

Quzhou: P(yr)=260, 

128 mm, 

Tg(yr)=9.8, 7.7°C. 

Huangfanqu: 

P(yr)=307, 313 mm, 

Tg(yr)=10.4, 9.6°C. 

N applied of 240 

kg N/ha and 

irrigated of 120 

mm. Delayed 

sowing dates or 

decreased 

planting density. 

Increased error of 

simulated yield with (1) 

delayed sowing dates: 

yield-NRMSE=7 to 12% 

(0.29 to 0.57 t/ha), 11 to 

16% (0.65 to 1.09 t/ha), 16 

to 22% (0.56 to 0.97 t/ha); 

(2) decreased planting 

density:  yield-NRMSE=9 

to 12% (0.54 to 0.56 t/ha), 

11 to 12% (0.72 to 0.90 

t/ha), 16 to 19% (0.77 to 

1.26 t/ha). 

Model 

evaluation 

38 
(Hochman et 

al., 2013) 
N/A 

Wimmera, 

Victoria, 

Australia 

Continuous 

26 years 
Yitpi 

45 stations with 5 

soil types. 

N of 50 kg N/ha 

was applied 

whenever soil 

nitrate in the root 

zone falls below 

50 kg N/ha. 

Annually estimated yield 

gaps of 0.66 to 4.12 t/ha 

with an average yield gap 

of 2.0 t/ha. 

Quantify yield 

gaps 

39 
(Wang et al., 

2013) 
5.3 NCP, China 1980-2009 

Multiple local 

varieties 

Tg(yr)at six sites 

were 13.0, 12.9, 

13.0, 14.1, 14.5 and 

15.1°C, while P(t) 

were 515, 538, 535, 

588, 550 and 995 

mm, respectively. 

Flood irrigated 

three to four 

times of 250 to 

300 mm. 

The model slightly 

overestimated the days to 

jointing and flowering and 

underestimated the days to 

emergence and maturity 

dates. 

Explore the 

phenological 

trends 

40 
(Zhang et 

al., 2013)* 
6.1 NCP, China 2009-2010 

Nongda211, 

Han6172, 

Yanzhan4110 

Mean minimum 

temperature of −8·8 

to −3.8°C in 

January. 

N applied of 240 

kg N/ha and 

irrigated of 120 

mm. 

Underestimate yield of 0.4 

to 0.6 t/ha, RMSE=0.5 to 

0.9 t/ha. 

Evaluate the 

climate change 

impacts on yield 

41 

(Carberry et 

al., 2013) 

(assembled 

datasets) 

Yield 

Prophet 

849 

commercial 

wheat crops in 

Australia 

2004-2011 
Various 

varieties 
P(yr)=182 mm 

N applied. 

Rainfed. 

APSIM was able to closely 

simulate commercial 

wheat yield. 

Quantify yield 

gaps 
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42 

(Brown et 

al., 2014) 

(assembled 

datasets) 

N/A 

28 cropping 

sites in 

Australia, 

USA, New 

Zealand, and 

NCP, China 

N/A 
Various 

varieties 

P(yr)=227 to 839 

mm 

N treatments 

appied ranged 

from 0 to 325 kg 

N/ha. Irrigated or 

rainfed. 

Biomass-R2=0.93, grain 

yield-R2=0.92, biomass 

nitrogen-R2=0.87, grain 

nitrogen- R2=0.87. 

Model 

development 

and validation 

43 
(Bryan et al., 

2014)* 
7.3 

Northern 

NSW region, 

Western 

Australia, 

South 

Australia 

Victoria 

region 

2006 N/A N/A 
N applied of 225 

kg N/ha. 

Census-reported 

yield=0.54 to 2.31 t/ha 

(median=1.26 t/ha), 

simulated yield=0.639 to 

2.906 t/ha (median=1.553 

t/ha). 

Evaluate yield 

response to 

environmental 

factors 

44 
(Peake et al., 

2014)* 
7.4 

Queensland, 

Australia 
2008-2009 

EGA Gregory, 

Kennedy, 

Ventura, 

Strezelecki, 

Baxter 

Crops experienced 

lodging, water 

stress, high 

temperature, hail 

damage in 2008. In 

2009, lodging, water 

stress, moderate to 

severe nitrogen 

stress were also 

observed. 

2008 crops were 

fertilised. All 

crops were 

irrigated. 

APSIM accounted for 72% 

of the non-lodged wheat 

yield variation and a 

RMSD=1.08 t/ha. While 

overestimated lodged crop 

yield and underestimated 

crop in the low-nitrogen 

field.  

Quantify yield 

gaps and yield 

response to 

environmental 

factors 

45 
(He et al., 

2014) 
7.4 

Loess Plateau, 

China 
2007-2008 Changwu89134 

Average Tx=15.2 to 

17.1°C. Average 

Tn=2.4 - 6.4°C. 

P(yr)=320.8 – 479.8 

mm. 

Urea applied of 

300 kg/ha. 

Rainfed. 

LAI-d index=0.91, 

R2=0.89. Biomass-d=0.96, 

R2=0.91. ESW-d=0.94, 

R2=0.78. ET-d=0.95, 

R2=0.85. 

Evaluate yield 

response to 

environmental 

factors 

46 
(Wang et al., 

2014)* 
7.5 

Northern 

China 
1989-2003 N/A 

P(t)=262, 608, 630, 

848 mm for each 

site. 

Three N 

application 

scenarios: (1) 

fertilised and 

irrigated, (2) 

stubble managed, 

fertilised and 

irrigated, (3) 

control (rainfed 

and irrigated, 

without fertiliser 

and stubble). 

Reasonably simulate 50% 

to 90% of the yield 

variation. 

Evaluate yield 

response to 

environmental 

factors 
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47 
(Zhao et al., 

2014a) 
7.5 NCP, China 2009-2011 SJZ15 

1961-2010: 

P(yr)=550 mm, 

Tg(yr)=12.9°C. 

N application 

ranged from 0 to 

330 kg N/ha. 

Irrigation ranged 

from 75 mm to 

375 mm. 

The model overestimated 

biomass and yield. The 

calibrated nitrogen 

concentration improved 

biomass and nitrogen 

updated simulations, 

especially under low 

nitrogen input. 

Evaluate the 

threshold 

nitrogen 

concentration 

used in the 

model 

48 
(Zhao et al., 

2014b)* 
7.5 NCP, China 2003-2011 SJZ8, SJZ15 

Summer monsoon 

climate, with 

P(yr)=550 mm, 

Tg(yr)=12.9°C 

(1961-2010). 

Calcaric Fluvisol 

with a sandy clay 

loam texture. 

N treatments of 0, 

123, 158, 192, 

261, 330 kg N/ha. 

Irrigation: 3 × 

75=225 mm. 

The model accounted for 

more than 85% of the 

biomass variation, 

biomass-RMSE=1.1 t/ha, 

more than 80% of the yield 

variation, yield-

RMSE=0.73 t/ha. 

Evaluate the 

root modelling 

49 
(Xiao and 

Tao, 2014)* 
N/A 

Northern 

China 
2005-2009 

Fengkang7, 

Jingdong8, 

Hengshui741, 

Shimai12, 

Boai7422, 

Zhengmai9023, 

Fu63, Lumai23 

Tg(yr)from 12.8 to 

15.7 for all four 

locations. 

N applied: 90 or 

120 kg N/ha used 

as base fertiliser 

and 60 or 75 kg 

N/ha added at 

jointing stage. 

Irrigated 4 × 50 

mm. 

The average difference 

between modelled and 

observed yield<0.5 t/ha, 

R2=0.85. 

Evaluate yield 

response to 

environmental 

factors 

50 
(Li et al., 

2014) 
N/A NCP, China 1981-2010 

Jinfeng1, 

Jiamai26, 

Gaoyou503, 

Bainong3217, 

Yumai18, 

Zhengmai9023, 

Jinan13, 

Lumai15, 

Lumai21 

N/A 

Local traditional 

practices: 

irrigation was not 

conducted every 

year, but fertiliser 

was used several 

times every year. 

Yield-RMSE=0.3205 to 

0.8291 t/ha, NRMSE (%) 

=5.7 to 14.1, d-

value=0.90-0.97, R2=0.71-

0.89. 

Identify the 

change pattern 

of yields 

51 

(Soltani and 

Sinclair, 

2015) 

(assembled 

datasets) 

7.X Grogan, Iran 2005-2008 
Several local 

varieties 

Silty clay. 

P(gs)=340 mm, 

average Tx=17.2°C, 

average Tn=7.3°C. 

N applied from 0 

to 122 kg N/ha. 

Part of crops were 

irrigated. 8 to 12 

sowing dates. 6 to 

7 sowing 

densities ranged 

from 50-800 

plant/m2. 

LAI at anthesis: 

RMSE=0.74, r=0.53; dry 

mass at anthesis: 

RMSE=1.50 t/ha, r=0.51; 

dry mass at maturity: 

RMSE=2.44 t/ha, r=0.72; 

yield: RMSE=0.62 t/ha, 

r=0.81. 

Model 

intercomparison 

and evaluation 
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52 
(Sun et al., 

2015) 
7.0 NCP, China 

2006-2012 

(1st 

experiment), 

1984-2012 

(2nd 

experiment) 

Jimai7, 

Jimai36, 

Jimai733 

The total 

evapotranspiration 

during the growing 

season is 400 to 450 

mm. Soil: loam, the 

average water 

holding capacity is 

38%, and the wilting 

point is 13%. 

N application: 

100 to 125 kg 

N/ha (1984 to 

1990); 220 kg 

N/ha (in the 

1990s); 250 kg 

N/ha (after 2000). 

Irrigation: 1st 

experiment: full 

irrigation, critical 

stage irrigation, 

minimum 

irrigation, rainfed. 

2nd experiment: 

the irrigation was 

managed 

similarly as the 

full irrigation 

treatment. 

1st experiment: the model 

was able to explain more 

than 83% of the yield 

variation. RMSE values 

under full irrigation, 

critical stage irrigation, 

minimum irrigation and 

rainfed were 0.330, 0.567, 

0.923 and 0.762 t/ha. 

2nd experiment: yield-

RMSE=0.590 t/ha. 

Evaluate yield 

response to 

environmental 

factors 

53 
(Acuña et 

al., 2015) 
7.1 

10 sites, 

Tasmania, 

Australia 

1980s, 2020s 

Brennan, Isis, 

Machellar, 

Revenue, 

Tennant 

(winter wheat) 

and Kellalac 

(spring wheat) 

P(yr)=499 to 965 

mm, Tx=16.1 to 

17.6˚C, Tn=4.6 to 

8.2˚C. 

N application 

ranged from 24 to 

245 kg N/ha. 

Yield-RMSE=1 t/ha, 

R2=0.84. 

Explore the 

potential 

management 

strategies to 

close the yield 

gap 

54 

(Deihimfard 

et al., 

2015)* 

7.2 
Northeastern 

Iran 
2009-2011 

Late maturing: 

Sionz, 

Gascozhen; 

early maturing: 

Chamran 

P(gs)=137 to 298 

mm, Tx=9.7 to 

14˚C, Tn=6.9 to 

10.1˚C, Tg(yr)=8.8 

to 12.3˚C. 

N applied at four 

levels: 0, 55, 110, 

172 kg N/ha. 

Irrigated 5 to 9 

times with 50 mm 

each time. 

Yield-RMSE=0.71 t/ha, 

R2=0.83. 

Quantify yield 

gaps 

55 
(O’Leary et 

al., 2015) 
7.4 

Victoria, 

Australia 
2007-2009 Yitpi 

Elevated CO2 

condition (550 

µmol/mol) and 

normal CO2 

condition (365 

µmol/mol) 

N applied of 0 

and 53 to 138 kg 

N/ha. 

Irrigated/rainfed. 

Normal and late 

sowing dates. 

APSIM tended to 

overestimate LAI at DC65 

(R2=0.24, RMSE=0.70 

m2/m2), biomass at DC31 

(R2=0, RMSE=1.592 t/ha), 

biomass at DC65 

(R2=0.56, RMSE=1.542 

t/ha) and yield (R2=0.20, 

RMSE=1.294 t/ha). 

Evaluate the 

climate change 

impacts on yield 

56 
(Innes et al., 

2015) 
7.5 Australia 1982-2008 Hartog 

P(gs)=250 to 400 

mm. Recurrent 

N applied of 69 

kg N/ha. 

Yield variation (%): 

RMSE=18.9%, R2=0.69.  

Evaluate model 

under high-
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drought, high 

temperature and low 

rainfall. 

temperature 

episodes 

57 
(Zhao et al., 

2015)* 
7.5 NCP, China 2009-2010 SJZ8, SJZ15 

Summer monsoon 

climate, with 

P(yr)=550 mm, 

Tg(yr)=12.9°C 

(1961-2010). 

Calcaric Fluvisol 

with a sandy clay 

loam texture. 

1st experiment: 3 

× 75 mm 

irrigations. 0, 

123, 192, 261, 

330 kg N/ha N 

applied. 2nd 

experiment: 

1/2/3/5 × 75 mm 

irrigations. 158 

kg N/ha N 

applied. 

Yield-RMSE=0.33 t/ha, 

R2=0.97. The simulated 

grain yield remained 

similar with modified 

parameters. 

Analyse the 

resource use 

efficiency 

58 
(Ahmed et 

al., 2016) 
N/A 

Islamabad, 

Pakistan 
2009-2011 

Tatara, NARC-

2009, Sehar-

2006, SKD-1, 

F-Sarhad 

High rainfall (P(yr)> 

1000 mm). 

Tg(yr)=21.3°C. The 

annual potential 

evapotranspiration is 

about 1600 mm. 

N/A 

Phenology-RMSE=2.03 to 

5.09day, R2=0.8, 

maximum LAI-

RMSE=0.14 to 0.32 

m2/m2, R2=0.83, 

accumulated biomass-

RMSE=0.15 to 0.40 t/ha, 

R2=0.92 and yield-

RMSE=0.12 to 0.31 t/ha, 

R2=0.82. 

Model 

calibration and 

evaluation 

59 
(Van Oort et 

al., 2016) 
7.4 NCP, China 2006-2007 Shimai12 

Continental 

monsoon: cold and 

dry winters. 

P(yr)=533 mm, only 

2% occurs in winter. 

Three levels of 

irrigation: (1) 0, 

(2) 75 mm water 

at stem extension, 

(3) 75 mm at stem 

extension plus 75 

mm water at 

booting. Enough 

N was applied to 

ensure no nutrient 

limitation. 

The model was able to 

explain 95% of biomass 

variation, 90% of LAI 

variation, 84% of SWC 

variation, 82% of yield 

variation. Biomass-

RMSE=0.88 t/ha, LAI-

RMSE=0.72 t/ha, SWC-

RMSE=27 mm, yield-

RMSE=0.64 t/ha. 

Construct 

groundwater 

neutral cropping 

systems 

60 
(Li et al., 

2016) 
7.5 NCP, China 2008-2010 Jimai22 

Typical temperate 

monsoon climate. 

Tg(yr)=13.9 °C, 

P(yr)=547 mm for 

the period 1990-

2010.  

Four N 

treatments: (1) 0, 

(2) farmer 

conventional 

fertilisation (234 

kg/ha urea 

applied), (3) 

reduced 

APSIM explained 94% 

and 88% of the variation in 

final biomass and grain 

yield, with RMSE of 1.28 

and 0.82 t/ha. 

Explore 

possibility of 

resources usage 

reduction while 

maintaining the 

yield 
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fertilisation (144 

kg/ha urea 

applied), (4) 

reduced N with 

manure (54 kg/ha 

chicken manure + 

90 kg/ha urea 

applied). 

61 
(Mielenz et 

al., 2016)* 
7.5 

Kingaroy 

(KGR) and 

Kingsthorpe 

(KTHP), 

Southeastern 

Queensland, 

Australia 

2009 

(KTHP), 

2011(KGR) 

Hartog (KGR), 

Lang (KTHP) 

Humid subtropical. 

Tg(yr)=18.2 °C at 

both sites. 

P(yr)=776 mm and 

630 mm, 

respectively. 

KGR: sprinkler 

irrigated, four N 

treatments were 

applied: (1) 0, (2) 

20 kg/ha of urea 

applied adjusted 

according to 

estimated residual 

soil N, (3) 80 

kg/ha of urea 

applied, (4) 140 

kg/ha of urea 

applied. 

KTHP: fertilised, 

three irrigation 

treatments: when 

50/60/85% of the 

PAWC was 

depleted. 

R2=0.92. 

Identify 

strategies for 

mitigating crop 

N2O emissions 

62 

(Zeleke and 

Nendel, 

2016)* 

7.6 
NSW, 

Australia 
2013-2014 

EGA Gregory, 

Livingston 

Sandy clay loam 

Red Kandosol. For 

2013 and 2014: 

number of frosts=40 

days, 48 days; 

P(t)=263 mm, 326 

mm. 

Irrigation 

applied=247 mm 

(in 2013), 229 

mm (in 2014). 

Yield-RMSE=0.65 t/ha, 

R2=0.92. 

Evaluate yield 

response to 

environmental 

factors 

63 
(O’Leary et 

al., 2016)* 
7.6 

Wagga 

Wagga, New 

South Wales 

and Warwick, 

Queensland, 

Australia 

1979-

2003,1968-

2012 

N/A 

In some seasons, 

crops suffered from 

diseases like root-

lesion nematodes. 

Different stubble, 

tillage and 

nitrogen 

application 

managements 

applied. 

Wagga Wagga: yield-

RMSE=1.08 t/ha. 

Warwick: yield-

RMSE=1.39 t/ha. 

Evaluate yield 

response to 

environmental 

factors 

64 
(Liu et al., 

2016a)* 
7.7 

Environment-

controlled 
2010-2014 

Yangmai16, 

Xumai30 

Environment-

controlled phytotron 

experimental 

N and irrigation 

were applied to 

Heat happened at anthesis: 

yield-R2=0.73. Heat 

Evaluate the 

model ability of 
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chamber in 

China 

datasets under heat 

stress at anthesis and 

grain filling stages. 

The plant 

density=10 plants 

per pot, the diameter 

of a pot=0.28m. 

ensure no water 

or nitrogen stress. 

happened at grain filling: 

yield-R2=0.46. 

simulating heat 

impacts 

65 
(Araya et al., 

2017) 
7.4 Ethiopia 2011-2012 HAR-2501 N/A 

Two levels of N 

applied: (1) 0, (2) 

64 kg N/ha. 

Rainfed. 

Simulated phenology R2 

over 0.8, 6.0day, yield-

R2=0.63, 0.14 t/ha. 

Evaluate the 

climate change 

impacts on yield 

66 

(Gaydon et 

al., 2017)* 

(assembled 

datasets) 

N/A 

Twelve Asian 

countries, total 

of 43 

experimental 

datasets, 966 

crops (326 

wheat) 

Various years 
Various 

varieties 

Different weather 

conditions 

(temperature, 

rainfall, CO2 level). 

Different sowing 

dates, dates of 

transplanting, N 

and surface 

residue 

treatments, 

rainfed or 

irrigation 

conditions. 

Yield-RMSE=0.845 t/ha, 

R2=0.79, standard 

deviation=1.794 t/ha. 

APSIM underestimated 

LAI, biomass, and yield in 

NCP, China due to 

incorrect temperature 

response of physiological 

processes. 

Model 

evaluation 

67 
(Zhao et al., 

2017)* 
N/A 

Inner 

Mongolia, 

China 

2011-2014 
Spring wheat 

variety 

Tg(yr)= -1 to 10˚C, 

P(yr)=50 to 450 

mm. 

N/A 

Yield-RMSE=0.029 t/ha to 

0.208 kg/ha, 

NRMSE=0.92%-6.4%, d-

index=0.85 to 0.95. 

Evaluate the 

climate change 

impacts on yield 

68 
(Holzworth 

et al., 2018) 

Next 

Generation 

Various 

locations 

Wheat model: 

650 

simulation 

years 

Various 

varieties 
N/A N/A 

Included in the model 

files. 

Model 

development 

and validation 

69 
(Hussain et 

al., 2018) 
7.8 

Faisalabad and 

Layyah in 

Punjab-

Pakistan 

2013-2015 

Lasani-2008, 

Punjab-2011, 

Galaxy-2013 

T(gs)= -0.1 to 43˚C 

Eleven planting 

dates (16th 

October to 16th 

March with 

interval of 15 to 

16 days). 

Irrigation was 

applied to ensure 

no water stress. N 

applied of 120 kg 

N/ha. 

The model overestimated 

yield with late planting 

dates. 

Model 

intercomparison 

and evaluation 

70 
(Phelan et 

al., 2018)* 
7.8 

Tasmania, 

Australia 
2005-2010 

Mackellar_Tas, 

Revenue, 

Tennant 

Cressy, Epping 

forest, Symmons 

plains: P(yr)=628 

mm, Tx=17.2, 

N applied of 75 

kg N/ha. Rainfed. 

Yield-R2=0.83, MPE 

(mean prediction error) 

=11%, EF=0.82, v (ratio of 

Produce data for 

further 

incorporation 
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Tn=5.1. Soil: fine 

sandy loam 

(PAWC=217 mm), 

clay loam (96 mm), 

loam (PAWC=221 

mm). 

variance in measured to 

simulated values) =1.09. 

into another 

model 

71 

(Brown et 

al., 2018) 

(assembled 

datasets) 

7.9 
Eight 

countries 
N/A 

Various 

varieties 

48 experiments, 655 

treatments, different 

planting years. 

Different time of 

sowing, N 

fertilizer, 

irrigation, residue 

additions, 

population, 

tillage. 

R2 ≥ 0.84 and NSE ≥ 0.81 

for all model variables 

presented (R2=0.84, 

RMSE=1.005 t/ha and 

NSE = 0.81 for yield), 

except grain protein which 

had an R2 of 0.42 and a 

NSE of 0.36. Flag leaf-

R2=0.98, anthesis-

R2=0.98. 

Model 

development 

and validation 

72 
(Bahri et al., 

2019) 
N/A 

Nabeul, 

Cherfech, 

Hendi Zitoun, 

Boulifa, Oued 

Mliz, and 

Mornag, 

Tunisia 

1989-1992, 

1996-1998, 

1999-2000, 

2003-2006 

Karim 

Nabeul: P(gs)=232 

mm, soil: sandy; 

Cherfech: 

P(gs)=345, 516 mm, 

soil: silty clay loam; 

Hendi Zitoun: 

P(gs)=299, 139, 105 

mm, soil: silty clay; 

Boulifa: P(gs)=424, 

499, 520 mm, soil: 

silt-clay sandy; 

Oued Mliz: 

P(gs)=240 mm, soil: 

clay loam; Mornag: 

P(gs)=125 mm, soil: 

clay loam. 

Nabeul: 

irrigation=228 

mm, N 

application=132 

kg N/ha; 

Cherfech: 

irrigation=255, 

163 mm, N 

application =198, 

132 kg N/ha; 

Hendi Zitoun: 

irrigation=290, 

300, 250 mm, N 

application =60, 

150 kg N/ha; 

Boulifa: 

irrigation=0, N 

application =76, 

150 kg N/ha; 

Oued Mliz: 

irrigation=100 

mm, N 

application =150 

kg N/ha; Mornag: 

irrigation=252 

mm, N 

Yield-RMSE=1.647 t/ha, 

agreement index=0.83. 

Evaluate yield 

response to 

environmental 

factors 
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application =150 

kg N/ha. 

73 
(Bai et al., 

2020) 
7.7 NCP, China 1981-2015 

Jimai22, 

Jining142, 

Zhengzhou761 

P(gs)=100 to 300 

mm. 

On-farm: N 

fertiliser were 

applied at sowing 

and jointing. 

Three to four 

times irrigation. 

High yield: Four 

irrigation 

scenarios: (1) no 

irrigation, (2) one 

irrigation, (3) two 

irrigations, (4) 

three irrigations. 

Two N 

applications: (1) 

one N application 

at sowing stage of 

0 to 300 kg N/ha, 

(2) Split N 

application 

(sowing and 

jointing stages) of 

0 to 300 kg N/ha. 

Simulation of observed 

high yield records: 

RMSE=1.15 t/ha, 

NRMSE=12%. Simulation 

of on-farm yield: 

RMSE=0.576 t/ha, 

NRMSE=8.8%. 

Quantify yield 

gaps and seek 

for options to 

increase yield 

74 
(Araya et al., 

2020)* 
7.7 

Kulumsa, 

Oromia 

(KARC); 

Hagereselam, 

Tigray region 

(HS); Ilala 

(IL); Wukro, 

Tigray region 

(WU), 

Ethiopia 

2006-2008, 

2012 

(KARC), 

2014 (HS, IL, 

WU) 

Early, medium 

and late 

maturing 

varieties 

Four sites: black 

vertisol, clay soils. 

P(yr)=820, 669, 583, 

565.6 mm. 

P(gs)=503, 542, 

491, 335.4 mm. 

Average Tx=23.1, 

22.5, 23.6, 28.0˚C. 

Average Tn=10, 

11.1, 12.1, 11.1 ˚C. 

Two N 

application rates: 

(1) 64 kg N/ha, 

(2) 128 kg N/ha. 

Rainfed. 

Yield-NRMSE 

(normalised RMSE) 

=22.8%, days of 

flowering-RMSE=4.3%, 

days of maturity-

NRMSE=8.3%. 

Evaluate the 

climate change 

impacts on yield 

75 
(Yan et al., 

2020)* 
7.9 NCP, China 2007-2016 KN199 

Loamy soil. 

P(gs)=50 to 230 

mm, Tg(yr)=12.7˚C. 

Three irrigation 

treatments: (1) 

full irrigation 

(225 to 375 mm), 

(2) critical stage 

irrigation (75 mm 

at jointing stage 

in addition to 

The model could explain 

approximately 90% of 

phenology, biomass 

accumulation, grain yield 

and seasonal 

evapotranspiration for 

winter wheat. The yield-

RMSE were 0.263, 0.598 

Explore 

possibility of 

resources usage 

reduction while 

maintaining the 

yield 
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minimum 

irrigation), (3) 

minimum 

irrigation (keep 

the top 50 cm soil 

layer above 75% 

of field capacity). 

and 0.453 t/ha under the 

minimum irrigation, 

critical stage irrigation and 

full irrigation treatments. 

76 
(Fletcher et 

al., 2020)* 
7.8 

Western 

Australia 
2010, 2015 N/A 

Rainfed (water 

limited condition) 
N/A 

Yield-RMSE=0.77 t/ha, 

R2=0.69. 

The climate 

change impacts 

on the 

distribution of 

Australian 

wheat belt 
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Overall, researchers report that site-specifically calibrated APSIM-Wheat provides a useful yield 239 

prediction tool for a wide range of environments. Nevertheless, while the model incorporates stress 240 

functions to account for limitations of water, nitrogen, heat and frost (Zheng et al., 2014), it sometimes 241 

fails to capture these stress eff ects sufficiently (Barlow et al., 2015). Each of the stress effects is now 242 

discussed in more detail.  243 

2.5. Factors affecting APSIM yield prediction 244 

Several factors affecting APSIM-Wheat yield prediction were distilled and presented in the following 245 

section after we reviewed papers in Table 3. Identified influencing factors include model calibration, 246 

crop resources (water, nutrition), temperature and biotic stress. 247 

2.5.1. Model calibration 248 

APSIM-Wheat performs optimally when reliable and accurate soil information is available and 249 

biotic/abiotic stresses are absent (Dalgliesh et al., 2012). Accurate specification of soil water holding 250 

characteristics aff ects APSIM-Wheat prediction performance (Lilley et al., 2003; Sadras et al., 2003). 251 

Specifying lower limits of plant available water with field measurements rather than using estimations 252 

from soil texture can improve simulation accuracy. In one study, the R2 of the relationship between 253 

simulated and observed yields increased from 0.60 to 0.74, and the RMSE decreased from 0.31 t/ha to 254 

0.19 t/ha when using lower limits of extractable water derived from field gravimetric soil water 255 

measurements , compared with texture based estimates (Sadras et al., 2003). Hunt et al. (2006) indicated 256 

that when the model was initialised with appropriate soil water holding characteristics and input data, 257 

68% of the yield predictions were within ±0.5 t/ha of the observed yields.  258 

Across the Australian dryland cropping area, the crucial challenge for predicting commercial wheat 259 

yield is to accurately describe the soil characteristics, soil water and nitrogen sources (Carberry et al., 260 

2009). This requirement motivated the development of the APSoil soil database (Dalgliesh et al., 2012, 261 

2009), which provides representative soil parameters for major Australian soils. For Australian 262 

paddocks, if field measured soil parameters are not available, APSoil can provide soil information such 263 

as the Plant Available Water Capacity (PAWC) based on approximate soil type information (Innes et 264 

al., 2015; Phelan et al., 2018). 265 

Some other parameters and functions in APSIM have been modified by authors to achieve better 266 

performance. The maximum and critical nitrogen concentration in leaves used in the APSIM-Wheat 267 

model was too low when compared to the observed data collected from NCP fields. Adjustment of these 268 

two parameters can improve the model simulation, especially under low nitrogen input (Zhao et al., 269 

2014a). Root growth parameters were modified to better simulate the root biomass and its distribution 270 

(Zhao et al., 2015, 2014b). The soil moisture factor used for the denitrification rate calculation was 271 
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modified by Mielenz et al. (2016), instead of using drained upper limit (DUL) as the threshold, the 272 

authors modified it to be decided by the water-filled pore space and saturation (SAT). Brown et al. 273 

(2018) pointed out that the phenology model needs careful parametrisation for diff erent cultivars. 274 

2.5.2. Water stress 275 

Balwinder-Singh (2011) evaluated APSIM-Wheat in India for diff erent management approaches with 276 

and without mulch and six irrigation scheduling treatments. The results indicated that the model 277 

underpredicted grain yield by 0.6–1 t/ha when crops were subject to water deficit. Asseng et al. (1998b) 278 

attributed the underpredicted yield to insufficient re-translocation of stored pre-anthesis carbohydrates 279 

to the grain by APSIM. They suggested the model can be improved by including functions to remobilise 280 

additional carbohydrates of stem into the grain when crops experience severe drought conditions. In a 281 

separate study, water-limited simulation resulted in overestimation of yield by 0.55 t/ ha with a mean 282 

simulated yield of 2.3 t/ha in the Western Australian wheat belt (Fletcher et al., 2020). 283 

2.5.3. Heat stress 284 

Heat stress during wheat growth, especially at anthesis and grain filling stages, aff ects APSIM yield 285 

prediction significantly (Liu et al., 2016a). Hochman et al. (2009) reported that a widespread unseasonal 286 

heatwave, followed by a frost in the Wimmera and Mallee regions of Victoria, Australia in 2004 caused 287 

the model to overestimate yields by 0.9 t/ha with a mean simulated yield of 1.8 t/ha. Lobell et al. (2012) 288 

found that the shortening of the green season (by +2°C warming) was underrated by APSIM by up to 289 

eight days, and yield losses were underestimated by up to 50% after comparing the model simulation 290 

with a regression model based on nine years of wheat phenology (from satellite observations) and daily 291 

temperature data. Liu et al. (2016a) conducted environment-controlled chamber experiments to test the 292 

model response when heat stress happened at anthesis and grain filling stages. The results indicated that 293 

wheat is more sensitive to heat at anthesis since both grain number and size are aff ected, while heat 294 

during grain filling only decreased the grain size, due to a shorter grain filling duration. The model 295 

failed to capture the heat stress impacts at anthesis and grain filling on grain number, underestimating 296 

the impacts on grain size at both stages. Hussain et al. (2018) evaluated performance of APSIM 297 

simulations of winter wheat sown at diff erent times, from early to extremely late. The model poorly 298 

predicted yield for late planting dates due to high temperature during grain filling. Even a short-term 299 

exposure of wheat to extreme high temperatures at early grain filling can reduce the duration of grain 300 

filling and hence the cumulative degree days and resulting in smaller harvest yield (Stone and Nicolas, 301 

1995). Lobell et al. (2012) also detected greater senescence from extreme heat, beyond the impacts of 302 

increased average temperatures. 303 

In summary, the quality of grain number and size simulation exerts a critical influence on the accuracy 304 

of yield prediction. Only using the daily mean temperature to apply heat stress is not eff ective in 305 
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accounting for heat wave impacts. In addition, short periods (1–3 days) of extremely high temperatures 306 

(> 33˚C) can also affect the crop growth and ultimately result in a significant reduction in grain yield 307 

(Barlow et al., 2015). Accounting for high daily maximum temperatures as another variable to 308 

determine the heat stress impact would help the model better respond to heat waves. 309 

2.5.4. Frost damage 310 

Barlow et al. (2015) summarised three crucial physiological damages that have impacts on yield 311 

production in response to a frost event: seedling death during the vegetative stage, sterility at anthesis 312 

and death of formed grains during grain filling. Frost during the vegetative stage has smaller impact on 313 

harvest yield than during later stages as it mainly aff ects seedling survival (Fuller et al., 2007) and 314 

causes leaf senescence (Shroyer et al., 1995). The greatest yield production impacts resulting from frost 315 

are at the reproductive stage, and this frost sensitivity increases from heading to the end of anthesis 316 

(Frederiks et al., 2012). 317 

Hochman et al. (2013) found that the APSIM-Wheat (with the model default frost parameters) could 318 

not account for extreme events such as severe frosts and might overestimate harvest yields under those 319 

conditions, based on an assessment of the model with data collected from the Wimmera region of 320 

Victoria, Australia. In 1998 the crops on one farm of this region were severely damaged by the stem 321 

frost and the model overestimated the harvest yield by more than 5 t/ha. Hochman et al. (2009) also 322 

reported an occurrence of both frost and heat damages in October 2004, late anthesis or early grain 323 

filling stages (the period when the crops are sensitive to extreme temperatures) in the Wimmera and 324 

Mallee regions of Victoria that caused the model to over-predict yield. For varieties with strong cold 325 

tolerance in the North China Plain, the minimum temperature threshold to cause leaf senescence was 326 

changed from -15°C to -20°C to eliminate the underestimation of LAI, biomass and yield (Chen et al., 327 

2010b; Wang et al., 2009; Zhang et al., 2017, 2013). The modified temperature response of thermal 328 

time calculation and the temperature response of radiation use efficiency (RUE) led to further improve 329 

model simulations (Chen et al., 2010b, 2010c).  330 

2.5.5. Other abiotic stresses 331 

Some other factors APSIM-Wheat fails to simulate have been identified in model validation. The eff ect 332 

of soil cracking on soil evaporation is not taken into account in the reviewed model version, which leads 333 

the model to incorrectly simulate the water movement and further decreases yield prediction accuracy 334 

(Moeller et al., 2007; Mohanty et al., 2012; Paydar et al., 2005). Hochman et al. (2007) mentioned there 335 

was potential to improve yield prediction if a suitable function could be developed to describe the 336 

eff ects of subsoil constraints. Peake et al. (2014) tested the APSIM model performance in Queensland 337 

and New South Wales. During the wheat growth period, lodging was observed in most fields by the 338 

middle of grain filling and became worse after a large rain event. APSIM predicted lodging-impacted 339 
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yield with a relatively large RMSE=3.26 t/ha, while non-lodged grain yield was predicted with 340 

RMSE=1.06 t/ha. When crops suff ered hail damage in 1997 on one farm in the Wimmera region of 341 

Victoria, Australia, the model totally missed the hail storm damage and still predicted grain yield over 342 

7 t/ha (Hochman et al., 2013). O’Leary et al. (2015) tested the APSIM-Wheat under two water regimes 343 

(irrigation and rain-fed), two nitrogen fertilisation regimes (0 and 53 – 138 kg N/ha), and two sowing 344 

dates for daytime ambient (365 µmol/mol) and elevated (550 µmol/mol) CO2 environments at Horsham, 345 

Australia. The results indicated that the model showed a tendency to overestimate early biomass (DC31, 346 

stem elongation) (Zadoks et al., 1974), biomass at DC65 (anthesis), LAI at DC65 and grain yield under 347 

the normal CO2 conditions; the resulting RMSE values were 1.592 t/ha, 1.542 t/ha, 0.70 m2/m2 and 348 

1.294 t/ha, respectively. Under the elevated CO2 condition, the model overcompensated the CO2 effect 349 

and over predicted early biomass and harvest yields.  350 

2.5.6. Biotic stress 351 

Crops in most of the reviewed papers were well managed, with no significant insects, weeds, pests, or 352 

plant diseases observed. O’Leary et al. (2016) examined the performance of the APSIM-Wheat model 353 

under diff erent stubble, tillage and nitrogen application management scenarios. Some large predictive 354 

errors were found when the model predicted yields for fields of Warwick, Australia, where the wheat 355 

was heavily infected with the root-lesion nematode. Biotic stress such as root disease load can have 356 

major impacts that are not represented in APSIM-Wheat yet. The simulated yield deviated more from 357 

the observed (RMSE=1.54 t/ha) when high nitrogen fertiliser was applied. 358 

2.5.7. Implications of the influential factors in changing climate 359 

Under future climate scenarios, both mean and variance of temperatures are projected to increase, along 360 

with precipitation variability. This will lead to increased heat waves, frost risk, and changing risk of 361 

drought and flood (Rigby and Porporato, 2008; Trenberth, 2011; Zeppel et al., 2014). The changing 362 

climate may also be favourable to certain wheat diseases, e.g. stripe rust (Luck et al., 2011) which have 363 

not been represented in the model yet. APSIM-Wheat, as a major cropping system tool used to study 364 

climate change impacts and seek solutions to address them (Deihimfard et al., 2018; Yang et al., 2014), 365 

needs improvement in the representation of heat stress, frost stress, water deficit, and the effects of pests, 366 

particularly when it is adopted to predict wheat production under the projected climate scenarios.  367 

In addition to daily mean temperature, maximum temperature could be included as a variable to 368 

determine heat stress impact. The underestimation of heat stress impacts will lead to over-optimistic 369 

simulations of the future wheat production. Meanwhile, increasing mean temperatures accelerate crop 370 

growth and shorten the growing season, resulting in crops reaching the frost-sensitive anthesis stage 371 

more rapidly (Zheng et al., 2015). The absence of parameter values for functions to account for frosts 372 

can potentially lead to overestimation of harvest yields. Parameterising the frost damages of leaf 373 
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senescence, seedling death, or death of formed grains will improve the model simulation capability. 374 

The variable precipitation intensity and probability may reduce users’ confidence in simulation 375 

accuracy since the model showed uncertainty in predicting water-limited yield. Improved functioning 376 

and parametrisation to correctly estimate water deficit impacts on wheat growth is warranted. Apart 377 

from using the model to study future climate impacts on production, when users apply the model to a 378 

new study area or cultivar, accurate soil parameters and site-specifically calibrated cultivar parameters 379 

improve the model performance. 380 

3. Meta-analysis of data from past studies 381 

3.1. Building database for meta-analysis and performance metrics 382 

All papers reviewed in Section 2 that had data that were extractable from tables, figures, text, or 383 

provided by the authors were included in the meta-database. In total, data from 30 studies were used to 384 

compose the meta-database for further analysis. These 30 studies are marked with asterisks in Table 3. 385 

Digitising the data from published scatter plots in the literature was performed with the 386 

WebPlotDigitizer tool (https://automeris.io/WebPlotDigitizer/). The database includes 1895 pairs of 387 

observed and simulated grain yields expressed in tons per ha. All these points were for validation 388 

simulations. The data originated from seven countries and included 51 wheat cultivars (see Table 3). 389 

These data were assembled and categorised according to diff erent crop stresses and model 390 

initialisations. The conditions captured were: 391 

 Crop stresses: water availability, nitrogen availability, heat stress, lodging, disease. 392 

 Model initialisations: fully site-specific calibration, partially site-specific calibration, non-site-393 

specific calibration.  394 

APSIM Classic (model version please refer to Table 3) performance was evaluated for the whole data 395 

set and subsets corresponding to various conditions using the performance metrics in 2.2.  To obtain R2
, 396 

a linear regression was fitted to the observed and simulated grain yield pairs. Residuals (simulated – 397 

observed yield) were also calculated and box plots drawn for diff erent conditions. Comparisons 398 

between predicted yield residuals and observed yields were also plotted to visually investigate model 399 

capability and limitations. Statistics of coefficient of determination (R2), RMSE (equation 3), NRMSE 400 

(equation 4), and EF (equation 5) were utilised to quantify the model performance. 401 

3.2. Factors affecting APSIM yield prediction error 402 

Overall, the model performed well. Figure 2 compares the predicted yield with the observed yield from 403 

the meta-database. APSIM-Wheat predicted grain yield with R2 =0.68, RMSE=1.06 t/ha, 404 

NRMSE=28.89%, EF=0.63. This result is consistent with the findings from most papers reviewed in 405 

Section 2. To put these results in context of practical cropping decisions, Yield Prophet® users reported 406 
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that discrepancies between the predicted and observed yields exceeding 0.5 t/ha reduced their 407 

confidence in using the model for decision support (Hochman et al., 2009a), indicating that factors 408 

contributing to the uncertainty and potential solutions should be explored. The deviation of observed 409 

vs. simulated yields scatters from the 1:1 line in Figure 2 (black dashed line) denotes model simulation 410 

deficiencies. The discrepancy between the regression line (grey dashed line) and the 1:1 line indicates 411 

existence of bias that varies from positive to negative values with yield. Potential causes of this bias 412 

include not fully site-specific calibration, water stress, nitrogen stress, heat stress, lodging, root-lesion 413 

nematode. The variation of yield prediction error and uncertainty under diff erent environments, 414 

treatments, and model initialisations will be analysed in the following sections separately. 415 

 416 

Figure 2. Comparison between observed and APSIM-Wheat simulated grain yields (black dashed 417 
line: 1:1 line; grey dashed line: regression line) 418 

3.2.1. Site-specific calibration and specification of soil parameters 419 

Figure 3 shows APSIM-Wheat validation results of the studies that used site-specific calibration. As 420 

described in Section 2.3, site-specific calibration is done by (1) manually tuning parameters to make 421 

the simulations correspond well with the observations or (2) specifying parameters with field 422 

measurements (usually soil texture, soil hydraulic and/or chemical parameters. The results indicated 423 

that the model, once site-specifically calibrated ((1), (2) individually or simultaneously), was able to 424 

estimate the harvest yield with an R2 of 0.90, RMSE=0.64 t/ha, and a NRMSE of 14.08%. The model 425 

performance improved when model cultivar parameters were manually tuned and soil parameters were 426 

initialised with ground observations simultaneously (fully site-specific calibration), resulting in RMSE 427 
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smaller than 0.5 t/ha, NRMSE of 10.15%, and an EF of 0.85, indicating that the model is performing 428 

well. When only the cultivar parameters were calibrated, the model maintained the EF of 0.8, with 429 

RMSE and NRMSE slightly increased to 0.7 t/ha and 12.93%, and an R2 of 0.82. The yield prediction 430 

performance began to decline when only the soil parameters were specified with field measurements 431 

without adjusting other model parameters, both R2 and EF decreased to 0.77, with an NRMSE=20.82%. 432 

The RMSE was only 0.51 t/ha since the yield range in this case were lower than in other cases. 433 

Figure 4 shows results when soil parameters were specified using a soil database – APSoil or estimated 434 

soil hydraulic characteristics. Model default genotype parameters were utilised for specific cultivars. 435 

Compared to cases in Figure 3, these initialisation methods led to decrease the model accuracy and 436 

uncertainty, resulting in RMSE increasing from 0.64 to 1.25 t/ha and NRMSE increasing from 14.0% to 437 

32.46%. When estimated soil hydraulic parameters were used, the RMSE of yield prediction was 1.37 438 

t/ha and the NRMSE was 40.45%. Performance improved using the APSoil database to specify soil 439 

parameters resulting in model predictions with lower RMSE and NRMSE of 0.7 t/ha and 13.0%, 440 

compared with the model performance when using soil texture-derived soil parameters. 441 

Results in Figure 3 and Figure 4 indicate that manually tuning cultivar parameters, and/or specifying 442 

the soil characteristics with ground observations can substantially improve the model performance. 443 

Convincing evidence is presented to demonstrate that APSIM-Wheat is able to simulate wheat grain 444 

yield within 0.5 t/ha when fully site-specific calibration implemented. When field measured data is not 445 

available, using a look-up-table approach that uses APSoil to specify the soil hydraulic properties can 446 

achieve yield prediction accuracy of RMSE=0.7 t/ha. Setting soil parameters with estimated data is still 447 

acceptable, but not ideal. The estimated soil parameters largely affect the yield prediction accuracy and 448 

uncertainty since they cannot appropriately describe the soil properties. 449 
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 450 

Figure 3. Comparison between observed and APSIM-Wheat simulated grain yields when cultivar 451 
parameters were manually tuned, and/or soil parameters were specified with ground observations 452 

(green circle: both cultivar and soil parameters were calibrated, R2=0.87, RMSE=0.44 t/ha, 453 
NRMSE=10.15%, EF=0.85; blue dot: only cultivar parameters were tuned, R2=0.82, RMSE=0.7 454 
t/ha, NRMSE=12.93%, EF=0.8; orange square: only soil parameters were specified using field 455 

measurements, R2=0.77, RMSE=0.51 t/ha, NRMSE=20.82%, EF=0.77) 456 

 457 

Figure 4. Comparison between observed and APSIM-Wheat simulated grain yields when soil 458 
parameters specified using APSoil or estimated data (blue dot: estimated soil characteristics, 459 
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R2=0.45, RMSE=1.37 t/ha, NRMSE=40.45%, EF=-0.27; orange square: soil parameters were 460 
specified using APSoil, R2=0.78, RMSE=0.7 t/ha, NRMSE=13.0%, EF=0.76) 461 

3.2.2. Water availability 462 

To assess the impacts of water availability on APSIM yield prediction, only site-specifically calibrated 463 

datasets from irrigated or water limited fields have been selected. Figure 5 shows box plots of prediction 464 

residuals. The cases are presented in the order of water stress, from highest (1) to lowest (3). Case 1 465 

shows datasets for crops under water limited conditions. Datasets from two papers were included 466 

(Fletcher et al., 2020; Peake et al., 2014). Wheat from Case 2 was irrigated at critical growth stages 467 

with different amounts of water (Balwinder-Singh et al., 2011; Chen et al., 2010b; Deihimfard et al., 468 

2015; Wang et al., 2013; Xiao and Tao, 2014; Yan et al., 2020; Zhang et al., 2013; Zhao et al., 2014b). 469 

Wheat from Case 3 was also irrigated, but not at specific growth stages. The irrigation amount and 470 

scheduling were adapted to the actual water demand (Gaydon et al., 2017; Mielenz et al., 2016; Yan et 471 

al., 2020). 472 

Wheat in Case 1 suff ered from water stress. Peake et al. (2014) observed mild water stress during the 473 

pre- and post-anthesis, while the model was also used to predict water-limited yield (Fletcher et al., 474 

2020). 50% of the predicted yield residuals were within the range of 0.2–1 t/ha, 99.3% of them were 475 

within the range -0.4–2.4 t/ha, while the median was approximately 0.33 t/ha. From the datasets we 476 

analysed, yield overestimation was more obvious than underestimation under water stressed conditions. 477 

In Case 2, the fields were mainly from Punjab, India, North China Plain (NCP) and North-eastern Iran. 478 

They were irrigated at critical growth stages, e.g., sowing, jointing, flowering and grain filling, with 479 

total irrigation amounts between 75 and 450 mm. The accuracy of modelled yields was acceptable with 480 

RMSE around 0.65 t/ha. The median of residuals of modelled yields did not exceed -0.5 t/ha. 481 

Approximately 50% of the predicted yield residuals were within the range of -0.65–0.15 t/ha, and 99.3% 482 

of them were within the range of -1.7–1.25 t/ha. Underestimation was more obvious than overestimation. 483 

Case 3 shows crops irrigated according to their water demand. Irrigation scheduling and amount were 484 

adjusted according to rainfall amount, soil water content, and crop requirement. Crops in this case barely 485 

experienced water limitation and the model performance was more accurate and stable. The residual 486 

medians were less than 0.2 t/ha, and 99.3% of the residuals were within ±0.7 t/ha. 487 

Case 1 demonstrated that APSIM-Wheat tend to overestimate yield with more significant uncertainty 488 

under water-limited conditions. It seems that the constraint on wheat growth by limited water is not 489 

well accounted for by APSIM-Wheat, leading to overly optimistic grain yield prediction. The 490 

mechanism that APSIM-Wheat uses to handle water stress was described in Section 2.1.  The model 491 

only accounts for water deficit impacts on biomass production and leaf expansion. It does include a 492 

function intended to account for water stress on phenology, but the default parameterisation results in 493 

no effect on phenology. Consequently, proper parametrisation to correctly estimate drought impact on 494 
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phenology under water-limited condition is needed. For example, Chauchan et al. (2019) accounted for 495 

soil water effect to modulate APSIM Classic (version 7.10) predicted flowering time. But the proposed 496 

method can only reduce the daily thermal time and delay the flowering time when the soil water is 497 

sufficient (fractional available soil water>0.65). A proper scheme to directly simulate the impact of soil 498 

water stress on flowering time is yet to be developed. Greater water limitations result in higher canopy 499 

temperatures, which reduce the duration of biomass accumulation. The increased canopy temperatures 500 

under water deficit conditions should be considered to improve the performance of yield prediction 501 

(Asseng et al., 2004). Case 2 showed that with critical-stage irrigation the model can predict yield with 502 

acceptable accuracy (RMSE=0.65 t/ha), while the uncertainty is still obvious. These datasets 503 

demonstrated that once extra water was supplied (in addition to rainfall), APSIM-Wheat could capture 504 

the additional water resource. Case 3 showed that supplying irrigation water according to crop demand 505 

to avoid water limitation was associated with better modelling performance. 506 

Users operating APSIM in a water-limited situation should be aware of uncertainty and possible yield 507 

overestimation. Most researchers validate the model using real-world datasets to create confidence in 508 

its performance before using it in combination with climate projections for predicting food production 509 

under climate change scenarios. The frequency and intensity of droughts are projected to increase (Zhou 510 

et al., 2019) and the water availability for rain-fed agriculture is decreasing, and the crop model will 511 

probably underestimate yields under those conditions. Larger prediction uncertainty should be 512 

considered when utilising cropping system as a tool to assess future food production and security. 513 

 514 

Figure 5. Boxplot of APSIM predicted yield residuals under different irrigation practices 515 

3.2.3. Nitrogen availability 516 

We selected site-specific calibrated datasets to assess the impacts of nitrogen availability on APSIM 517 

yield prediction, in the absence of other stresses. Figure 6 shows box plots of prediction residuals of six 518 

cases, which were ordered from the largest to the smallest nitrogen stress. Case 1 shows datasets when 519 

crops experience nitrogen limitation. Datasets from two papers were included (Peake et al., 2014; Wang 520 

et al., 2014). Case 2 was also composed of datasets from two papers (Sadras et al., 2003; Zhao et al., 521 
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2014b). The authors did not specify the nitrogen rate in these datasets but declared no nitrogen stress 522 

was observed. Wheat from Cases 3–6 were fertilised with different rates of nitrogen. The application 523 

amount increased from 64 kg N/ha to 195 kg N/ha. Data for Case 3 were collected from three papers 524 

(Araya et al., 2020; Paydar et al., 2005; Phelan et al., 2018), while Cases 4–6 used datasets from Xiao 525 

and Tao (2014) and Yan et al. (2020). 526 

Case 1 reported nitrogen stress symptoms (leaf yellowing) at DC31 (early stem elongation) (Peake et 527 

al., 2014), while the model was also used to predict yield when no fertiliser was applied in fields (Wang 528 

et al., 2014). Both overestimation and underestimation were observed with the median of residuals 529 

approximately -0.3 t/ha. In some cases, the underestimation was even more than 3 t/ha. Case 2 collected 530 

datasets with not specified fertilisation amounts, but no nitrogen stress was observed in the fields. The 531 

model predicted yield with acceptable accuracy and uncertainty. The median of residuals was close to 532 

zero. 50% of the predicted yield residuals were within the range of -0.5–0.2 t/ha, and 99.3% of them 533 

were within the range of -1.25–1 t/ha. Case 3 contained datasets with nitrogen rates of 64, 75, 100, and 534 

128 kg N/ha. The distribution of the prediction residuals was similar to those in Case 2. With the 535 

increasing nitrogen application rate, the predicted yield residuals were less scattered, ranging within 536 

±1.0 t/ha to ±0.5 t/ha while the medians tended towards 0 t/ha. The model was well-performed to catch 537 

the fertilisation differences. 538 

Under nitrogen limited conditions (Case 1), APSIM-Wheat showed the largest uncertainties and more 539 

severe yield underestimation and the model tended to underestimate yield when crops suffered from 540 

nitrogen limitation. The reason as indicated by Peake et al. (2014) is that APSIM-Wheat overrated the 541 

nitrogen stress duration by two weeks longer compared to observed nitrogen stress in the paddocks. 542 

Cases 2–6 showed that once extra nitrogen was supplied, the model captured the increasing trend and 543 

tended to predict yield with better accuracy and lower uncertainty. The residuals were contained within 544 

±1.0 t/ha when sufficient nitrogen was applied. 545 

An additional parametrisation of the nitrogen impacts on phenology would be able to better address 546 

potential simulation problems. Zhao et al. (2014a) assessed the nitrogen concentration parameters used 547 

in the model, the results indicated that the higher leaf maximum and critical nitrogen concentrations led 548 

the model to overrate the nitrogen stress impacts on biomass accumulation and underrate the impacts 549 

on leaf expansion. They suggested to adjust and verify these parameters to increase the prediction 550 

accuracy of the model for grain yield. 551 
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 552 

Figure 6. Boxplot of APSIM predicted yield residuals under different nitrogen application rates (* 553 
fertiliser amount was not specified) 554 

3.2.4. Other stresses 555 

Figure 7 illustrates the model predicted yield residuals against the observed yield for datasets under 556 

irrigated and fertilised conditions. We intentionally included datasets for wheat without stress and under 557 

some abiotic stresses such as heat and lodging, to compare the model performance under stressed and 558 

stress-free situations (Deihimfard et al., 2015; Liu et al., 2016b; Mielenz et al., 2016; Peake et al., 2014; 559 

Xiao and Tao, 2014; Yan et al., 2020; Zeleke and Nendel, 2016; Zhao et al., 2015, 2014b). The model 560 

showed a good performance for all stress-free cases, with RMSE=0.66 t/ha and NRMSE=12.49%. 561 

However, when the stressed cases are included, RMSE increased to around 1.03 t/ha and NRMSE to 562 

20.26%, respectively. The mean residual is 0.3 t/ha and standard deviation is 0.99 t/ha. Most of the 563 

residuals are between the range of ± 1.96 times of the standard deviation around the mean. The outliers 564 

are from the cases where the crops were under heat stress and impacted by lodging. 565 

Heat stress. Figure 7 indicates that the model cannot capture well the eff ects from a short-term exposure 566 

of wheat to extreme high temperatures, especially during anthesis and grain filling stages (orange 567 

squares and green circles). The datasets were from a environment-controlled phytotron experiment (Liu 568 

et al., 2016a). In these cases, yields are over-predicted, especially if the heat stress occurred during 569 

anthesis with RMSE=1.5 t/ha and NRMSE=35.47%, while heat stress during grain filling resulted in 570 

RMSE=1.14 t/ha and NRMSE=22.75%. Barlow et al. (2015) emphasised the need to define response 571 

functions for calculating extreme temperatures impacts, with a priority on the response during anthesis 572 

and grain filling stages. 573 

Lodging. The brown triangular points from Figure 7 represent the model predicted residuals against the 574 

observed yield when crops were impacted by lodging (the data is from Peake et al. (2014)). Yield is 575 

severely over-estimated with RMSE=3.26 t/ha, NRMSE=76.77%. The reviewed APSIM-Wheat version 576 

does not consider effects of crop lodging, while lodging can be caused by many factors, e.g., excessive 577 

nitrogen fertilisation and irrigation, heavy rain, wind, or hailstorm. The development of functions in 578 
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APSIM-Wheat that accounts for the effects of lodging would be desirable although it would require 579 

collection of extensive databases of crops affected by lodging. 580 

Our results suggest that the projected increasing frequency, intensity and duration of global heat waves 581 

(Perkins et al., 2012), extreme weather events (Meehl et al., 2000), and floods (Kundzewicz et al., 2014) 582 

can lead to greater uncertainties in the simulation of future climate scenarios with APSIM-Wheat. 583 

However, as mentioned in Section 3.2.2, model users tend to trust the model performance even when 584 

the model is applied to project crop yield under future scenarios, which could lead to overly optimistic 585 

food production by underestimating the negative effects of heat and lodging. 586 

 587 

Figure 7. Comparison between predicted yield residuals and observed yield under irrigated and 588 
fertilised condition 589 

4. Summary and Conclusion 590 

In this work, we have reviewed 76 articles and conducted a meta-analysis of 30 applications of the 591 

APSIM model (APSIM Classic, version 1.X – version 7.9) to obtain detailed information on the 592 

process-based model's performance in predicting wheat yields. Our study shows that the model provides 593 

reasonably accurate wheat grain yields across a wide range of varieties, environments and management 594 

practices around the world with an overall uncertainty of about 1 t/ha. However, we found a large 595 

variation in uncertainties within the modelling studies considered, especially between studies with site-596 

specific calibration and non-site-specific calibration.  597 
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Furthermore, we found that factors such as heat and frost stress, water and nitrogen availability, soil 598 

parameterisation, calibration of genotype parameters, soil cracking, lodging, increased atmospheric 599 

CO2 concentration and plant diseases are important factors affecting model performance. Heat and frost 600 

stresses, in particular, caused large discrepancies in the prediction of grain yield. One reason for this is 601 

that the reviewed model versions use only daily mean temperature as a heat factor to calculate the effects 602 

on biomass accumulation, although wheat is particularly sensitive to shorter-term heat stress during the 603 

anthesis and grain filling phases. Therefore, APSIM tended to overestimate crop yield that experienced 604 

heat wave conditions. Frost stress functions are already implemented in the reviewed model but without 605 

default parametrisation which negates their effect (impact factor = 0) so APSIM overestimates yield in 606 

crops subject to frost damage. The applications of APSIM to situations with water stress and nitrogen 607 

limitation led to greater uncertainties (overestimation for water stress and underestimation for nitrogen 608 

stress). Like the frost stress function, the effects of water and nitrogen stress on phenology are not yet 609 

parameterised. 610 

A fully or partial site-specific calibration resulted in crop yields being predicted with higher accuracy 611 

(on average, RMSE and NRMSE were 0.64 t/ha and 14.08%, respectively). A fully site-specific 612 

calibration, including the determination of soil hydraulic parameters, initial soil conditions from field 613 

measurements and adjustment of other parameters (such as crop parameters), resulted in the lowest 614 

uncertainty in crop prediction (RMSE=0.44 t/ha, NRMSE=10.15%).  If soil parameters are not available, 615 

using a soil database such as APSoil to specify soil hydraulic properties is a good alternative, leading 616 

to yield predictions on average with RMSE=0.7 t/ha and NRMSE=13.0%. Soil texture-derived soil 617 

parameterisation is also acceptable but with comparatively lower accuracy and uncertainty with an 618 

RMSE=1.37 t/ha and an NRMSE=40.45%. 619 

The reviewed APSIM-Wheat version is not equipped with functions that account for other abiotic and 620 

biotic influences like soil cracking, lodging, or crop disease. Improving the model functionally to 621 

consider all these factors could lead to better crop predictions; however, a major challenge is that there 622 

is often a significant stochastic component to these influences. An alternative would be to pursue 623 

methods such as assimilating external observations into the model to continuously adjust certain model 624 

state variables and properties to improve model performance. Remote sensing data can provide timely 625 

information on the crop or environment status and could be used to update the model simulation 626 

regularly during the simulation. Another option is to use multi-model ensembles to account for model 627 

uncertainty in describing the impact of climate change on agricultural productivity (Asseng et al., 2015, 628 

2013; Iizumi et al., 2018; Maiorano et al., 2017; Martre et al., 2015b; Wang et al., 2017).  629 

This work did not assess the model’s ability of simulating other crop states such as biomass, leaf area, 630 

water use, or fertility dynamics. The simulation quality of these dynamics is still largely unknown and 631 

worth further investigation. 632 
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The meta-database in this paper was composed of datasets from separate papers. In our meta-analysis, 633 

datasets from existing papers were compiled to analyse the impact of certain factors, while other factors 634 

could not be held constant, which may have led to some bias. The model validations considered in our 635 

study were all point-based, the plant models are usually used at the plot, field scales or even larger. 636 

However, the effects of spatial heterogeneity were not considered in our study. Finally, we did not 637 

consider the uncertainties embedded in the forcing inputs. According to Tao et al. (2018), when 638 

coupling climate models with crop models, the uncertainty from downscaled climate projections could 639 

be larger than those from crop models.  640 

Crop models like APSIM are not just predictive tools, but also exploratory tools in conjunction with 641 

future scenarios. The vision for agricultural systems models is to accelerate progress of finding ways to 642 

address the global food security challenges. This paper aims to provide the perspectives on the model 643 

outputs credibility and uncertainty under various conditions covering a wide spectrum of management 644 

practices, environments and wheat varieties. We expect that our analysis of APSIM-Wheat model 645 

performance will assist users to have appropriate interpretations and avoid misuse of the model. 646 
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