000897477 001__ 897477
000897477 005__ 20240507205536.0
000897477 0247_ $$2doi$$a10.3389/frwa.2021.655837
000897477 0247_ $$2Handle$$a2128/28749
000897477 0247_ $$2altmetric$$aaltmetric:109649280
000897477 0247_ $$2WOS$$aWOS:000678440700001
000897477 037__ $$aFZJ-2021-03810
000897477 082__ $$a333.7
000897477 1001_ $$0P:(DE-HGF)0$$aSchönbrodt-Stitt, Sarah$$b0$$eCorresponding author
000897477 245__ $$aStatistical Exploration of SENTINEL-1 Data, Terrain Parameters, and in-situ Data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem
000897477 260__ $$aLausanne$$bFrontiers Media$$c2021
000897477 3367_ $$2DRIVER$$aarticle
000897477 3367_ $$2DataCite$$aOutput Types/Journal article
000897477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715083719_818
000897477 3367_ $$2BibTeX$$aARTICLE
000897477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897477 3367_ $$00$$2EndNote$$aJournal Article
000897477 520__ $$aReliable near-surface soil moisture (θ) information is crucial for supporting risk assessment of future water usage, particularly considering the vulnerability of agroforestry systems of Mediterranean environments to climate change. We propose a simple empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar (SAR) C-band single-look complex data and topographic information together with in-situ measurements of θ into a random forest (RF) regression approach (10-fold cross-validation). Firstly, we compare two RF models' estimation performances using either 43 SAR parameters (θNovSAR) or the combination of 43 SAR and 10 terrain parameters (θNovSAR+Terrain). Secondly, we analyze the essential parameters in estimating and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high spatiotemporal (17 × 17 m; 6 days) resolution. The developed site-specific calibration-dependent model was tested for a short period in November 2018 in a field-scale agroforestry environment belonging to the “Alento” hydrological observatory in southern Italy. Our results show that the combined SAR + terrain model slightly outperforms the SAR-based model (θNovSAR+Terrain with 0.025 and 0.020 m3 m−3, and 89% compared to θNovSAR with 0.028 and 0.022 m3 m−3, and 86% in terms of RMSE, MAE, and R2). The higher explanatory power for θNovSAR+Terrain is assessed with time-variant SAR phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e., K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound topographic attributes (e.g., wetness index). Our proposed methodological approach constitutes a simple empirical model aiming at estimating θ for rapid surveys with high accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal coverage of ground-truthing) by identifying differences of SAR measurements between S1 overpasses in the morning and afternoon.
000897477 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897477 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897477 7001_ $$0P:(DE-HGF)0$$aAhmadian, Nima$$b1
000897477 7001_ $$0P:(DE-HGF)0$$aConrad, Christopher$$b2
000897477 7001_ $$0P:(DE-HGF)0$$aKurtenbach, Markus$$b3
000897477 7001_ $$0P:(DE-HGF)0$$aRomano, Nunzio$$b4
000897477 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b5$$ufzj
000897477 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000897477 7001_ $$0P:(DE-HGF)0$$aNasta, Paolo$$b7
000897477 773__ $$0PERI:(DE-600)2986721-6$$a10.3389/frwa.2021.655837$$gVol. 3, p. 655837$$p655837$$tFrontiers in water$$v3$$x2624-9375$$y2021
000897477 8564_ $$uhttps://juser.fz-juelich.de/record/897477/files/frwa-03-655837.pdf$$yOpenAccess
000897477 909CO $$ooai:juser.fz-juelich.de:897477$$popenaire$$pVDB$$popen_access$$pdnbdelivery$$pdriver
000897477 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Würzburg$$b0
000897477 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Würzburg$$b1
000897477 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Halle-Wittenberg$$b2
000897477 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Würzburg$$b3
000897477 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Naples Federico II$$b4
000897477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b5$$kFZJ
000897477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000897477 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Naples Federico II$$b7
000897477 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897477 9141_ $$y2021
000897477 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897477 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000897477 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000897477 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897477 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-06
000897477 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000897477 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000897477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT WATER : 2022$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-03T10:51:43Z
000897477 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-03T10:51:43Z
000897477 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-03T10:51:43Z
000897477 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-03T10:51:43Z
000897477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000897477 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000897477 920__ $$lyes
000897477 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000897477 980__ $$ajournal
000897477 980__ $$aVDB
000897477 980__ $$aI:(DE-Juel1)IBG-3-20101118
000897477 980__ $$aUNRESTRICTED
000897477 9801_ $$aFullTexts