000897478 001__ 897478
000897478 005__ 20220930130328.0
000897478 0247_ $$2doi$$a10.1002/vzj2.20149
000897478 0247_ $$2ISSN$$a1539-1663
000897478 0247_ $$2Handle$$a2128/28750
000897478 0247_ $$2altmetric$$aaltmetric:112650127
000897478 0247_ $$2WOS$$aWOS:000686523500001
000897478 037__ $$aFZJ-2021-03811
000897478 082__ $$a550
000897478 1001_ $$0P:(DE-Juel1)168342$$aWang, Jihuan$$b0$$eCorresponding author
000897478 245__ $$aInvestigating the controls on greenhouse gas emission in the riparian zone of a small headwater catchment using an automated monitoring system
000897478 260__ $$aHoboken, NJ$$bWiley$$c2021
000897478 3367_ $$2DRIVER$$aarticle
000897478 3367_ $$2DataCite$$aOutput Types/Journal article
000897478 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634715284_19755
000897478 3367_ $$2BibTeX$$aARTICLE
000897478 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897478 3367_ $$00$$2EndNote$$aJournal Article
000897478 520__ $$aRiparian zones as the transition zone between terrestrial and aquatic ecosystems play an important role in C and N cycling and greenhouse gas (GHG) emissions. As such, they may help to mitigate climate change but could also accelerate it, depending on the particular processes affected by changes in the hydrologic regime. Hydrological observations indicated frequent shallow groundwater in the riparian zone, especially near the stream and during the wet winter and spring seasons with consequently frequent occurrence of soil water saturation. The redox potential was mainly governed by the soil water regime: under water saturation conditions, the redox potential of the soil decreased and returned to the oxic state after soil drainage. We found that soil temperature and soil water content were the main drivers of the variations in CO2 fluxes, with highest CO2 emission during summer and the lowest emissions in the winter period (162.2–5.4 mg CO2–C m−2 h−1). The annual average daily N2O emission rate was low (2.3 μg N2O-N m−2 h−1), with the highest average daily N2O emission in March as a result of low temperature and partial soil saturation after heavy precipitation events (37.5 μg N2O-N m−2 h−1). Our study showed that continuous measurement of redox potential, soil temperature, and soil water content can improve the understanding of GHG emissions in riparian zones.
000897478 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897478 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897478 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b1
000897478 7001_ $$0P:(DE-HGF)0$$aSüß, Thomas$$b2
000897478 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b3
000897478 7001_ $$0P:(DE-Juel1)129555$$aWeuthen, Ansgar$$b4
000897478 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b5
000897478 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20149$$gVol. 20, no. 5$$n5$$pe20149$$tVadose zone journal$$v20$$x1539-1663$$y2021
000897478 8564_ $$uhttps://juser.fz-juelich.de/record/897478/files/W-2021-00435-b_MPDL_INVOICE_document.pdf
000897478 8564_ $$uhttps://juser.fz-juelich.de/record/897478/files/vzj2.20149.pdf$$yOpenAccess
000897478 8767_ $$8W-2021-00435-b$$92021-10-15$$d2021-10-20$$eAPC$$jZahlung erfolgt$$lDEAL: Wiley$$zBelegnr.: 1200172191
000897478 909CO $$ooai:juser.fz-juelich.de:897478$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000897478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000897478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b3$$kFZJ
000897478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129555$$aForschungszentrum Jülich$$b4$$kFZJ
000897478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b5$$kFZJ
000897478 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897478 9141_ $$y2021
000897478 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000897478 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897478 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2019$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-05-04$$wger
000897478 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897478 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000897478 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000897478 920__ $$lyes
000897478 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000897478 980__ $$ajournal
000897478 980__ $$aVDB
000897478 980__ $$aI:(DE-Juel1)IBG-3-20101118
000897478 980__ $$aAPC
000897478 980__ $$aUNRESTRICTED
000897478 9801_ $$aAPC
000897478 9801_ $$aFullTexts