001     897478
005     20220930130328.0
024 7 _ |a 10.1002/vzj2.20149
|2 doi
024 7 _ |a 1539-1663
|2 ISSN
024 7 _ |a 2128/28750
|2 Handle
024 7 _ |a altmetric:112650127
|2 altmetric
024 7 _ |a WOS:000686523500001
|2 WOS
037 _ _ |a FZJ-2021-03811
082 _ _ |a 550
100 1 _ |a Wang, Jihuan
|0 P:(DE-Juel1)168342
|b 0
|e Corresponding author
245 _ _ |a Investigating the controls on greenhouse gas emission in the riparian zone of a small headwater catchment using an automated monitoring system
260 _ _ |a Hoboken, NJ
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634715284_19755
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Riparian zones as the transition zone between terrestrial and aquatic ecosystems play an important role in C and N cycling and greenhouse gas (GHG) emissions. As such, they may help to mitigate climate change but could also accelerate it, depending on the particular processes affected by changes in the hydrologic regime. Hydrological observations indicated frequent shallow groundwater in the riparian zone, especially near the stream and during the wet winter and spring seasons with consequently frequent occurrence of soil water saturation. The redox potential was mainly governed by the soil water regime: under water saturation conditions, the redox potential of the soil decreased and returned to the oxic state after soil drainage. We found that soil temperature and soil water content were the main drivers of the variations in CO2 fluxes, with highest CO2 emission during summer and the lowest emissions in the winter period (162.2–5.4 mg CO2–C m−2 h−1). The annual average daily N2O emission rate was low (2.3 μg N2O-N m−2 h−1), with the highest average daily N2O emission in March as a result of low temperature and partial soil saturation after heavy precipitation events (37.5 μg N2O-N m−2 h−1). Our study showed that continuous measurement of redox potential, soil temperature, and soil water content can improve the understanding of GHG emissions in riparian zones.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 1
700 1 _ |a Süß, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 3
700 1 _ |a Weuthen, Ansgar
|0 P:(DE-Juel1)129555
|b 4
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 5
773 _ _ |a 10.1002/vzj2.20149
|g Vol. 20, no. 5
|0 PERI:(DE-600)2088189-7
|n 5
|p e20149
|t Vadose zone journal
|v 20
|y 2021
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/897478/files/W-2021-00435-b_MPDL_INVOICE_document.pdf
856 4 _ |u https://juser.fz-juelich.de/record/897478/files/vzj2.20149.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:897478
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129555
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142357
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2019
|d 2021-05-04
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21